This commit is contained in:
Kizarm 2024-03-09 11:10:52 +01:00
parent 7ed58d1151
commit 9255d8d7e1
20 changed files with 1665 additions and 0 deletions

5
.gitignore vendored
View file

@ -7,3 +7,8 @@
*.bin
*.map
*.elf
midi/melody.c
midi/miditone.c
midi/ton/gen
midi/ton/miditones

View file

@ -36,3 +36,11 @@ Tvar výpisů je tento:<br />
A--3-B--34---- DP: --VV Z-V- -V-V ----<br />
A1---B-------8 DP: VVVZ VZVV ZZZV -VZV<br />
A1---B---45678 DP: ---Z -Z-V Z-Z- -VZV<br />
## midi
Funguje to podobně jako na STM32F051, jen to má omezení dané asi především
tím, že tohle nemá hardwarovou násobičku. Tedy jen 4 generátory. Na hračky
typu melodický zvonek, piánko atd. to stačí. Výhoda je, že piny vydrží 20mA,
je možné připojit 30 Ohm sluchátka (do série) plus sériový odpor 100 Ohm mezi
piny PD0 a PD2 a hraje to s dostatečnou hlasitostí a docela čistě.

117
ch32v003/pcmdma.cpp Normal file
View file

@ -0,0 +1,117 @@
#include "system.h"
#include "pcmdma.h"
#include "gpio.h"
static PcmDma * pInstance = nullptr;
extern "C" void DMA1_Channel5_IRQHandler( void ) __attribute__((interrupt));
void DMA1_Channel5_IRQHandler( void ) {
DMA1_Type::INTFR_DEF state (DMA1.INTFR);
DMA1.INTFCR.R = state.R; // clear all
if (!pInstance) return;
if (state.B.HTIF5 != RESET) pInstance->send(false);
else if (state.B.TCIF5 != RESET) pInstance->send(true);
}
/*
* initialize TIM1 for PWM
*/
static inline void tim1pwm_init () noexcept {
// Enable GPIOD and TIM1
RCC.APB2PCENR.modify([] (RCC_Type::APB2PCENR_DEF & r) -> auto {
r.B.IOPDEN = SET;
//r.B.IOPCEN = SET;
r.B.TIM1EN = SET;
return r.R;
});
// PD0 is T1CH1N, PD2 is T1CH1, 10MHz Output alt func, push-pull
GPIOD.CFGLR.modify([](GPIOA_Type::CFGLR_DEF & r) -> auto {
r.B.CNF0 = 2u;
r.B.MODE0 = 1u;
r.B.CNF2 = 2u;
r.B.MODE2 = 1u;
return r.R;
});
/* Alternative
AFIO.PCFR.B.TIM1RM = 1u;
// PC3 is T1CH1N, PC6 is T1CH1, 10MHz Output alt func, push-pull
GPIOC.CFGLR.modify([](GPIOA_Type::CFGLR_DEF & r) -> auto {
r.B.CNF3 = 2u;
r.B.MODE3 = 1u;
r.B.CNF6 = 2u;
r.B.MODE6 = 1u;
return r.R;
});
*/
// Reset TIM1 to init all regs
RCC.APB2PRSTR.B.TIM1RST = SET;
RCC.APB2PRSTR.B.TIM1RST = RESET;
// CTLR1: default is up, events generated, edge align
// SMCFGR: default clk input is CK_INT
// Prescaler
TIM1.PSC.R = 0u;
// Auto Reload - sets period
TIM1.ATRLR.R = MAXPWM - 1;
TIM1.CCER.modify([](TIM1_Type::CCER_DEF & r) -> auto {
// Enable CH1N, CH1 output, positive pol
r.B.CC1NE = SET;
r.B.CC1E = SET;
/*
r.B.CC1NP = SET; // active Low
r.B.CC1P = SET;
*/
return r.R;
});
// CH1 Mode is output, PWM1 (CC1S = 00, OC1M = 110)
TIM1.CHCTLR1_Output.modify([](TIM1_Type::CHCTLR1_Output_DEF & r) -> auto {
r.B.OC1M = 0x6u;
return r.R;
});
// Enable TIM1 outputs
TIM1.BDTR.modify([](TIM1_Type::BDTR_DEF & r) -> auto {
r.B.MOE = SET;
//r.B.DTG = 48u; // Dead time 1us
return r.R;
});
// Reload immediately + Trigger DMA
TIM1.SWEVGR.B.UG = SET;
TIM1.DMAINTENR.B.UDE = SET;
// Enable TIM1
TIM1.CTLR1.B.CEN = SET;
}
typedef __SIZE_TYPE__ size_t;
static inline void dma1ch5_init (void * ptr) noexcept {
// Enable DMA
RCC.AHBPCENR.modify([](RCC_Type::AHBPCENR_DEF & r) -> auto {
r.B.SRAMEN = SET;
r.B.DMA1EN = SET;
return r.R;
});
// DMA5 can be configured to attach to T1UP
// The system can only DMA out at ~2.2MSPS. 2MHz is stable.
DMA1.CNTR5 .R = FULL_LEN;
DMA1.MADDR5.R = reinterpret_cast<size_t>(ptr);
DMA1.PADDR5.R = reinterpret_cast<size_t>(& TIM1.CH1CVR);
NVIC.EnableIRQ (DMA1_Channel5_IRQn);
DMA1.CFGR5.modify([](DMA1_Type::CFGR5_DEF & r) -> auto {
r.B.DIR = SET; // MEM2PERIPHERAL
r.B.PL = 3u; // Highest priority.
r.B.PSIZE = 1u; // 16-bit peripheral
r.B.MSIZE = 1u; // 16-bit memory
r.B.MINC = SET; // Increase memory.
r.B.CIRC = SET; // Circular mode.
r.B.HTIE = SET; // Half-trigger
r.B.TCIE = SET; // Whole-trigger
// Enable DMA1 ch5
r.B.EN = SET;
return r.R;
});
}
PcmDma::PcmDma() noexcept : pL(buffer), pH(buffer + HALF_LEN), src(nullptr) {
pInstance = this;
tim1pwm_init ();
dma1ch5_init (buffer);
}

28
common/pcmdma.h Normal file
View file

@ -0,0 +1,28 @@
#ifndef PCMDMA_H
#define PCMDMA_H
#include "oneway.h"
#ifdef HAVE_CONFIG
/* Umožní použít externí parametry. */
#include "pwmconfig.h"
#else
static constexpr unsigned HALF_LEN = 0x40u;
static constexpr unsigned MAXPWM = 2000u;
#endif
static constexpr unsigned FULL_LEN = 2u * HALF_LEN;
/* Používá TIM1, PWM kanál 1, DMA1 kanál 5, přerušení DMA1_Channel5_IRQHandler */
class PcmDma {
uint16_t * const pL;
uint16_t * const pH;
uint16_t buffer [FULL_LEN];
OneWay * src;
public:
explicit PcmDma () noexcept;
void attach (OneWay & s) { src = & s; }
void send (const bool b) {
if (!src) return;
if (b) src->Send (pH, HALF_LEN);
else src->Send (pL, HALF_LEN);
}
};
#endif // PCMDMA_H

66
midi/Makefile Normal file
View file

@ -0,0 +1,66 @@
# ch32v003
TARGET?= ch32v003
#TARGET?= stm32f051
TOOL ?= gcc
#TOOL ?= clang
PRJ = example
VPATH = . ./$(TARGET)
BLD = ./build/
DFLAGS = -d
LFLAGS = -g
LDLIBS =
BFLAGS = --strip-unneeded
CFLAGS = -MMD -Wall -ggdb -fno-exceptions -ffunction-sections -fdata-sections
CFLAGS+= -I. -I./common -I./$(TARGET) -I/usr/include/newlib -DHAVE_CONFIG=1
DEL = rm -f
# zdrojaky
OBJS = main.o pcmdma.o
OBJS += tone.o midiplayer.o miditone.o melody.o
include $(TARGET)/$(TOOL).mk
BOBJS = $(addprefix $(BLD),$(OBJS))
all: $(BLD) $(PRJ).elf
# ... atd.
-include $(BLD)*.d
# linker
$(PRJ).elf: $(BOBJS)
-@echo [LD $(TOOL),$(TARGET)] $@
@$(LD) $(LFLAGS) -o $(PRJ).elf $(BOBJS) $(LDLIBS)
-@echo "size:"
@$(SIZE) $(PRJ).elf
-@echo "listing:"
$(DUMP) $(DFLAGS) $(PRJ).elf > $(PRJ).lst
-@echo "OK."
$(COPY) $(BFLAGS) -O binary $(PRJ).elf $(PRJ).bin
# preloz co je potreba
$(BLD)%.o: %.c
-@echo [CC $(TOOL),$(TARGET)] $@
@$(CC) -c $(CFLAGS) $< -o $@
$(BLD)%.o: %.cpp
-@echo [CX $(TOOL),$(TARGET)] $@
@$(CXX) -std=c++17 -fno-rtti -c $(CFLAGS) $< -o $@
$(BLD):
mkdir $(BLD)
flash: $(PRJ).elf
minichlink -w $(PRJ).bin flash -b
miditone.c: ton/gen
ton/gen
ton/gen: ton/gen.cpp
g++ -Os ton/gen.cpp -o ton/gen
melody.c: ton/miditones
ton/miditones -d -s2 -t4 mid/
ton/miditones: ton/miditonesV1.6.c
gcc -Os -Wno-pointer-sign -Wno-return-type ton/miditonesV1.6.c -o ton/miditones
# vycisti
clean:
$(DEL) $(BLD)* *.lst *.bin *.elf *.map *~ miditone.c melody.c
distclean: clean
$(DEL) ton/gen ton/miditones
.PHONY: all clean distclean flash

16
midi/audio.h Normal file
View file

@ -0,0 +1,16 @@
#ifndef AUDIO_H
#define AUDIO_H
#include <stdint.h>
static constexpr int AudioSampleRate = 24000;
/// Počet generátorů.
static constexpr unsigned int maxGens = 4;
/// Kladné maximum vzorku.
static constexpr int maxValue = 30000;
/// Záporné maximum vzorku.
static constexpr int minValue = -maxValue;
///
static constexpr unsigned int maxAmplt = (1U<<27);
#endif // AUDIO_H

1
midi/ch32v003 Symbolic link
View file

@ -0,0 +1 @@
../ch32v003/

1
midi/common Symbolic link
View file

@ -0,0 +1 @@
../common/

17
midi/main.cpp Normal file
View file

@ -0,0 +1,17 @@
#include "midiplayer.h"
#include "pcmdma.h"
static MidiPlayer player;
static PcmDma pcm;
int main (void) {
pcm.attach (player);
for (;;) {
/* BUG:
* Do smyčky nejde přidat jakýkoli další kód.
* Proč, neumím vysvětlit, ale lze to izolovat.
* Je zajímavé, že ADC postavené podobně to nedělá.
* */
}
return 0;
}

BIN
midi/mid/joy.mid Normal file

Binary file not shown.

BIN
midi/mid/ukoleb.mid Normal file

Binary file not shown.

108
midi/midiplayer.cpp Normal file
View file

@ -0,0 +1,108 @@
#include "midiplayer.h"
#include "tone.h"
#include "audio.h"
#include "pcmdma.h"
//#include "filtr.h"
/**
* @file
* @brief Jednoduchý přehrávač midi souborů.
*
* Kompletní midi obsahuje zvukové fonty, které jsou obrovské. Tohle je velice zjednodušené,
* takže docela dobře přehrává skladby typu ragtime, orchestrální midi jsou skoro nepoužitelné.
* Přesto se to pro jednoduché zvuky může hodit, protože je to poměrně nenáročné na systémové
* prostředky. Může to fungovat dokonce i na 8-bitovém uP.
* */
// static Filtr iir;
/// Generátory tónů
static Tone gens[maxGens];
/// Generuj vzorek pro všechny tóny @return Vzorek
static inline short genSample (void) {
int res = 0;
for (unsigned int i=0; i<maxGens; i++) res += gens[i].step();
// Pro jistotu omezíme - předejdeme chrastění
if (res > maxValue) res = maxValue;
if (res < minValue) res = minValue;
return (res);
}
/// Počítá další vzorek
short MidiPlayer::nextSample (void) {
if (pause) pause -= 1; // Časování tónu
else ToneChange(); // Nový tón - MidiPlayer::ToneChange
return genSample ();
}
static constexpr unsigned AudioMidiDelay = 24;
static constexpr int INPUT_BIT_RANGE = 16;
static constexpr unsigned SIGMA_MASK = (1u << (INPUT_BIT_RANGE + 0)) - 1u;
static constexpr unsigned SIGNED_OFFEST = (1u << (INPUT_BIT_RANGE - 1));
// Předpokládá se na vstupu signed int o šířce INPUT_BIT_RANGE
// přičemž 0 na vstupu odpovídá MAXPWM / 2 na výstupu. Vypadá to divně, ale funguje.
static unsigned pwm_sd (const int input) {
static unsigned sigma = 0; // podstatné je, že proměnná je statická
const unsigned sample = (input + SIGNED_OFFEST) * MAXPWM;
sigma &= SIGMA_MASK; // v podstatě se odečte hodnota PWM
sigma += sample; // integrace prostým součtem
return sigma >> INPUT_BIT_RANGE;
}
/******************************************************************/
/// Konstruktor
MidiPlayer::MidiPlayer() noexcept : OneWay() /*, but(GpioPortA, 2, GPIO_Mode_IN)*/ {
//but.setPuPd(GPIO_PuPd_UP);
index = 0;
pause = 0;
melody = scores[index++];
running = true;
}
unsigned MidiPlayer::Send (uint16_t * const ptr, const unsigned len) {
// if (!but.get()) running = true;
if (!running) {
for (unsigned n=0; n<len; n++) ptr [n] = 1000;
return len;
}
for (unsigned n=0; n<len; n++) {
const short s = nextSample();
ptr [n] = pwm_sd (s);
}
return len;
}
void MidiPlayer::stop (void) {
//running = false;
melody = scores[index++];
if (!melody) {
index = 0;
melody = scores[index++];
}
}
void MidiPlayer::ToneChange (void) {
unsigned char midt;
for (;;) { // Pro všechny tóny před pauzou
unsigned char cmd = * melody++;
if (cmd & 0x80) { // event
const unsigned geno = cmd & 0x0F;
cmd >>= 4;
switch (cmd) {
case 0x8: // off
gens[geno].setMidiOff();
break;
case 0x9: // on
midt = * melody++;
gens[geno].setMidiOn (midt);
break;
default:
stop();
return; // melodie končí eventem 0xf0
}
} else { // pause
midt = * melody++;
// Když to trochu uteče, zase se z toho nestřílí, tak to nechme být.
pause = ((unsigned int) cmd << 8) + midt; // v ms
pause *= AudioMidiDelay; // ale máme vzorkování cca 24 kHz
return;
}
}
}

31
midi/midiplayer.h Normal file
View file

@ -0,0 +1,31 @@
#ifndef DACPLAYER_H
#define DACPLAYER_H
#include "oneway.h"
#include "gpio.h"
/// Třída, která hraje čistě na pozadí.
class MidiPlayer : public OneWay {
// Veřejné metody
public:
/// Konstruktor
explicit MidiPlayer () noexcept;
unsigned Send (uint16_t * const ptr, const unsigned len) override;
//bool send (uint16_t * ptr, const int len) override;
void stop ();
protected:
// Chráněné metody
/// Obsluha tónu
void ToneChange (void);
/// Obsluha vzorku
short nextSample (void);
private:
//GpioClass but;
volatile bool running;
unsigned char const * melody;
unsigned index;
volatile int pause;
};
extern "C" const unsigned char * const scores[];
#endif // DACPLAYER_H

7
midi/pwmconfig.h Normal file
View file

@ -0,0 +1,7 @@
#ifndef CONFIG_H
#define CONFIG_H
static constexpr unsigned HALF_LEN = 0x80u;
static constexpr unsigned MAXPWM = 2000u;
#endif // CONFIG_H

1
midi/stm32f051 Symbolic link
View file

@ -0,0 +1 @@
../stm32f051/

76
midi/ton/gen.cpp Normal file
View file

@ -0,0 +1,76 @@
#include <stdio.h>
#include <math.h>
#include "../audio.h"
static constexpr int maxTone = (1L<<23) - 1;
int limit (double tone) {
int k = (int) round (tone);
if (k > maxTone) k = 0;
return k;
}
int normalize (double val, double scale) {
return (int) round (val * scale);
}
int main (void) {
double base, dint;
int i,j;
base = 8.1757989156; // C5 v Hz (http://www.tonalsoft.com/pub/news/pitch-bend.aspx)
base *= (double)(1UL << 24) / double (AudioSampleRate);
dint = pow(2.0, 1.0 / 12.0);
FILE* out = fopen ("miditone.c","w");
// Tabulka inkrementů pro midi tóny
fprintf (out, "const unsigned int midiTones[] = {\n");
for (i=0,j=0; i<127; i++) {
fprintf (out, "%8d, ", limit (base));
if (++j >= 12) {
j = 0;
fprintf (out, "\n");
}
base *= dint;
}
fprintf (out, "%8d };\n\n", limit (base));
// Vzorky pro jednu periodu tónu včetně barvy
double samples [256], max = 0.0, val;
base = M_PI / 128.0;
for (i=0; i<256; i++) {
val = 0.0;
val += 1.0 * sin (1.0 * base * (double) i);
// Je dobré přidat nějaké harmonické, jinak je tón chudý
val += 0.3 * sin (2.0 * base * (double) i);
// 7. harmonická je nepříjemná, zkuste si to.
// val += 0.5 * sin (7.0 * base * (double) i);
if (val > +max) max = +val;
if (val < -max) max = -val;
samples [i] = val;
}
max = (double)(0x1FFF) / max; // normála do 14. bitů
// mormalizace a výpis
fprintf (out, "const short onePeriod[] = {\n");
for (i=0,j=0; i<255; i++) {
fprintf (out, "%6d, ", normalize (samples[i], max));
if (++j >= 8) {
j = 0;
fprintf (out, "\n");
}
base *= dint;
}
fprintf (out, "%6d };\n\n", normalize (samples[i], max));
unsigned Attack = maxAmplt;
fprintf (out, "const unsigned attackTable[] = {\n");
for (i=0,j=0; i<127; i++) {
fprintf (out, "0x%08X, ", Attack);
if (++j >= 8) {
j = 0;
fprintf (out, "\n");
}
Attack -= Attack / 20;
}
fprintf (out, "0x%08X };\n\n", Attack);
fclose (out);
}

999
midi/ton/miditonesV1.6.c Normal file
View file

@ -0,0 +1,999 @@
/*********************************************************************************
*
* MIDITONES
*
* Convert a MIDI file into a bytestream of notes
*
*
* (C) Copyright 2011, Len Shustek
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of version 3 of the GNU General Public License as
* published by the Free Software Foundation at http://www.gnu.org/licenses,
* with Additional Permissions under term 7(b) that the original copyright
* notice and author attibution must be preserved and under term 7(c) that
* modified versions be marked as different from the original.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
***********************************************************************************/
/*
* Change log
* 19 January 2011, L.Shustek, V1.0
* -Initial release.
* 26 February 2011, L. Shustek, V1.1
* -Expand the documentation generated in the output file.
* -End the binary output file with an "end of score" command.
* -Fix bug: Some "stop note" commands were generated too early.
* 04 March 2011, L. Shustek, V1.2
* -Minor error message rewording.
* 13 June 2011, L. Shustek, V1.3
* -Add -s2 strategy to try to keep each track on its own tone generator
* for when there are separate speakers. This obviously works only when
* each track is monophonic. (Suggested by Michal Pustejovsky)
* 20 November 2011, L. Shustek, V1.4
* -Add -cn option to mask which channels (tracks) to process
* -Add -kn option to change key
* Both of these are in support of music-playing on my Tesla Coil.
* 05 December 2011, L. Shustek, V1.5
* -Fix command line parsing error for option -s1
* -Display the commandline in the C file output
* -Change to decimal instead of hex for note numbers in the C file output
* 06 August 2013, L. Shustek, V1.6
* -Changed to allow compilation and execution in 64-bit environments
* by using C99 standard intN_t and uintN_t types for MIDI structures,
* and formatting specifications like "PRId32" instead of "ld".
*/
#define VERSION "1.6"
/*--------------------------------------------------------------------------------
*
*
* About MIDITONES
*
*
* MIDITONES converts a MIDI music file into a much simplified stream of commands,
* so that a version of the music can be played on a synthesizer having only
* tone generators without any volume or tone controls.
*
* Volume ("velocity") and instrument specifications in the MIDI files are discarded.
* All the tracks are prcoessed and merged into a single time-ordered stream of
* "note on", "note off", and "delay" commands.
*
* This was written for the "Playtune" Arduino library, which plays polyphonic music
* using up to 6 tone generators run by the timers on the processor. See the separate
* documentation for Playtune. But MIDITONES may prove useful for other tone
* generating systems.
*
* The output can be either a C-language source code fragment that initializes an
* array with the command bytestream, or a binary file with the bytestream itself.
*
* MIDITONES is written in standard ANSI C (plus strlcpy and strlcat functions), and
* is meant to be executed from the command line. There is no GUI interface.
*
* The MIDI file format is complicated, and this has not been tested on a very
* wide variety of file types. In particular, we have tested only format type "1",
* which seems to be what most of them are. Let me know if you find MIDI files
* that it won't digest and I'll see if I can fix it.
* This has been tested only on a little-endian PC, but I think it should work on
* big-endian processors too. Note that the MIDI file format is inherently
* big-endian.
*
*
* ***** The command line *****
*
* To convert a MIDI file called "chopin.mid" into a command bytestream, execute
*
* miditones chopin
*
* It will create a file in the same directory called "chopin.c" which contains
* the C-language statement to intiialize an array called "score" with the bytestream.
*
*
* The general form for command line execution is this:
*
* miditones [-p] [-lg] [-lp] [-s1] [-tn] [-b] [-cn] [-kn] <basefilename>
*
* The <basefilename> is the base name, without an extension, for the input and
* output files. It can contain directory path information, or not.
*
* The input file is the base name with the extension ".mid". The output filename(s)
* are the base name with ".c", ".bin", and/or ".log" extensions.
*
*
* The following command-line options can be specified:
*
* -p Only parse the MIDI file; don't generate an output file.
* Tracks are processed sequentially instead of being merged into chronological order.
* This is mostly useful when generating a log to debug MIDI file parsing problems.
*
* -lp Log input file parsing information to the <basefilename>.log file
*
* -lg Log output bytestream generation information to the <basefilename>.log file
*
* -sn Use bytestream generation strategy "n".
* Two strategies are currently implemented:
* 1: favor track 1 notes instead of all tracks equally
* 2: try to keep each track to its own tone generator
*
* -tn Generate the bytestream so that at most n tone generators are used.
* The default is 6 tone generators, and the maximum is 16.
* The program will report how many notes had to be discarded because there
* weren't enough tone generators. Note that for the Arduino Playtunes
* library, it's ok to have the bytestream use more tone genreators than
* exist on your processor because any extra notes will be ignored, although
* it does make the file bigger than necessary . Of course, too many ignored
* notes will make the music sound really strange!
*
* -b Generate a binary file with the name <basefilename>.bin, instead of a
* C-language source file with the name <basefilename>.c.
*
* -cn Only process the channel numbers whose bits are on in the number "n".
* For example, -c3 means "only process channels 0 and 1"
*
* -kn Change the musical key of the output by n chromatic notes.
* -k-12 goes one octave down, -k12 goes one octave up, etc.
*
*
* ***** The score bytestream *****
*
* The generated bytestream is a series of commands that turn notes on and off, and
* start delays until the next note change. Here are the details, with numbers
* shown in hexadecimal.
*
* If the high-order bit of the byte is 1, then it is one of the following commands:
*
* 9t nn Start playing note nn on tone generator t. Generators are numbered
* starting with 0. The notes numbers are the MIDI numbers for the chromatic
* scale, with decimal 60 being Middle C, and decimal 69 being Middle A (440 Hz).
*
* 8t Stop playing the note on tone generator t.
*
* F0 End of score: stop playing.
*
* E0 End of score: start playing again from the beginning.
* (Shown for completeness; MIDITONES won't generate this.)
*
* If the high-order bit of the byte is 0, it is a command to delay for a while until
* the next note change.. The other 7 bits and the 8 bits of the following byte are
* interpreted as a 15-bit big-endian integer that is the number of milliseconds to
* wait before processing the next command. For example,
*
* 07 D0
*
* would cause a delay of 0x07d0 = 2000 decimal millisconds, or 2 seconds. Any tones
* that were playing before the delay command will continue to play.
*
*
* Len Shustek, 4 Feb 2011
*
*----------------------------------------------------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <stdbool.h>
#include <time.h>
#include <inttypes.h>
#include <sys/types.h>
#include <dirent.h>
/*********** MIDI file header formats *****************/
struct midi_header {
int8_t MThd[4];
uint32_t header_size;
uint16_t format_type;
uint16_t number_of_tracks;
uint16_t time_division;
};
struct track_header {
int8_t MTrk[4];
uint32_t track_size;
};
/*********** Global variables ******************/
#define MAX_TONEGENS 16 /* max tone generators: tones we can play simultaneously */
#define DEFAULT_TONEGENS 6 /* default number of tone generators */
#define MAX_TRACKS 24 /* max number of MIDI tracks we will process */
bool loggen, logparse, parseonly, strategy1, strategy2, binaryoutput;
FILE *infile, *outfile, *logfile;
uint8_t *buffer, *hdrptr;
unsigned long buflen;
int num_tracks;
int tracks_done = 0;
int outfile_itemcount = 0;
int num_tonegens = DEFAULT_TONEGENS;
int num_tonegens_used = 0;
unsigned channel_mask = 0xffff; // bit mask of channels to process
int keyshift = 0; // optional chromatic note shift for output file
long int outfile_bytecount = 0;
unsigned int ticks_per_beat = 240;
unsigned long timenow = 0;
unsigned long tempo; /* current tempo in usec/qnote */
unsigned int directory = 0;
unsigned int file_count = 0;
struct tonegen_status { /* current status of a tone generator */
bool playing; /* is it playing? */
int track; /* if so, which track is the note from? */
int note; /* what note is playing? */
}
tonegen [MAX_TONEGENS] = {
0};
struct track_status { /* current processing point of a MIDI track */
uint8_t *trkptr; /* ptr to the next note change */
uint8_t *trkend; /* ptr past the end of the track */
unsigned long time; /* what time we're at in the score */
unsigned long tempo; /* the tempo last set, in usec/qnote */
unsigned int preferred_tonegen; /* for strategy2: try to use this generator */
unsigned char cmd; /* CMD_xxxx next to do */
unsigned char note; /* for which note */
unsigned char last_event; /* the last event, for MIDI's "running status" */
bool tonegens[MAX_TONEGENS];/* which tone generators our notes are playing on */
}
track[MAX_TRACKS] = {
0};
/* output bytestream commands, which are also stored in track_status.cmd */
#define CMD_PLAYNOTE 0x90 /* play a note: low nibble is generator #, note is next byte */
#define CMD_STOPNOTE 0x80 /* stop a note: low nibble is generator # */
#define CMD_RESTART 0xe0 /* restart the score from the beginning */
#define CMD_STOP 0xf0 /* stop playing */
/* if CMD < 0x80, then the other 7 bits and the next byte are a 15-bit number of msec to delay */
/* these other commands stored in the track_status.com */
#define CMD_TEMPO 0xFE /* tempo in usec per quarter note ("beat") */
#define CMD_TRACKDONE 0xFF /* no more data left in this track */
/************** command-line processing *******************/
void SayUsage(char *programName){
static char *usage[] = {
"Convert MIDI files to an Arduino PLAYTUNE bytestream",
"miditones [-p] [-lg] [-lp] [-s1] [-tn] <basefilename>",
" -p parse only, don't generate bytestream",
" -lp log input parsing",
" -lg log output generation",
" -s1 strategy 1: favor track 1",
" -s2 strategy 2: try to assign tracks to specific tone generators",
" -tn use at most n tone generators (default is 6, max is 16)",
" -b binary file output instead of C source text",
" -cn mask for which tracks to process, e.g. -c3 for only 0 and 1",
" -kn key shift in chromatic notes, positive or negative",
"input file: <basefilename>.mid",
"output file: <basefilename>.bin or .c",
"log file: <basefilename>.log",
"" };
int i=0;
while (usage[i][0] != '\0') fprintf(stderr, "%s\n", usage[i++]);
}
int HandleOptions(int argc,char *argv[]) {
/* returns the index of the first argument that is not an option; i.e.
does not start with a dash or a slash*/
int i,firstnonoption=0;
/* --- The following skeleton comes from C:\lcc\lib\wizard\textmode.tpl. */
for (i=1; i< argc;i++) {
if (argv[i][0] == '/' || argv[i][0] == '-') {
switch (toupper(argv[i][1])) {
case 'H':
case '?':
SayUsage(argv[0]);
exit(1);
case 'L':
if (toupper(argv[i][2]) == 'G') loggen = true;
else if (toupper(argv[i][2]) == 'P') logparse = true;
else goto opterror;
break;
case 'P':
parseonly = true;
break;
case 'B':
binaryoutput = true;
break;
case 'D':
directory = true;
break;
case 'S':
if (argv[i][2] == '1') strategy1 = true;
else if (argv[i][2] == '2') strategy2 = true;
else goto opterror;
break;
case 'T':
if (sscanf(&argv[i][2],"%d",&num_tonegens) != 1 || num_tonegens <1 || num_tonegens > MAX_TONEGENS) goto opterror;
printf("Using %d tone generators.\n", num_tonegens);
break;
case 'C':
if (sscanf(&argv[i][2],"%d",&channel_mask) != 1 || channel_mask > 0xffff) goto opterror;
printf("Channel (track) mask is %04X.\n", channel_mask);
break;
case 'K':
if (sscanf(&argv[i][2],"%d",&keyshift) != 1 || keyshift < -100 || keyshift > 100) goto opterror;
printf("Using keyshift %d.\n", keyshift);
break;
/* add more option switches here */
opterror:
default:
fprintf(stderr,"unknown option: %s\n",argv[i]);
SayUsage(argv[0]);
exit(4);
}
}
else {
firstnonoption = i;
break;
}
}
return firstnonoption;
}
void print_command_line (int argc,char *argv[]) {
int i;
fprintf(outfile, "// command line: ");
for (i=0; i< argc; i++) fprintf(outfile,"%s ",argv[i]);
fprintf(outfile, "\n");
}
/**************** utility routines **********************/
/* match a constant character sequence */
int charcmp (char *buf, char *match) {
int len, i;
len = strlen (match);
for (i=0; i<len; ++i)
if (buf[i] != match[i]) return 0;
return 1;
}
/* announce a fatal MIDI file format error */
void midi_error (char *msg, unsigned char *bufptr) {
unsigned char *ptr;
fprintf(stderr, "---> MIDI file error at position %04X (%d): %s\n", (uint16_t)(bufptr-buffer), (uint16_t)(bufptr-buffer), msg);
/* print some bytes surrounding the error */
ptr = bufptr - 16;
if (ptr < buffer) ptr = buffer;
for (; ptr <= bufptr+16 && ptr < buffer+buflen; ++ptr) fprintf (stderr, ptr==bufptr ? " [%02X] ":"%02X ", *ptr);
fprintf(stderr, "\n");
exit(8);
}
/* check that we have a specified number of bytes left in the buffer */
void chk_bufdata(unsigned char *ptr, int len) {
if (ptr + len - buffer > buflen) midi_error("data missing", ptr);
}
/* fetch big-endian numbers */
uint16_t rev_short (uint16_t val) {
return ((val&0xff)<<8) | ((val>>8)&0xff);
}
uint32_t rev_long (uint32_t val){
return (((rev_short((uint16_t)val) & 0xffff) << 16) |
(rev_short((uint16_t)(val >> 16)) & 0xffff));
}
/* account for new items in the non-binary output file
and generate a newline every so often. */
void outfile_items (int n) {
outfile_bytecount += n;
outfile_itemcount += n;
if (!binaryoutput && outfile_itemcount > 20) {
fprintf (outfile, "\n");
outfile_itemcount = 0;
}
}
/************** process the MIDI file header *****************/
void process_header (void) {
struct midi_header *hdr;
unsigned int time_division;
chk_bufdata(hdrptr, sizeof(struct midi_header));
hdr = (struct midi_header *) hdrptr;
if (!charcmp(hdr->MThd,"MThd")) midi_error("Missing 'MThd'", hdrptr);
num_tracks = rev_short(hdr->number_of_tracks);
time_division = rev_short(hdr->time_division);
if (time_division < 0x8000) ticks_per_beat = time_division;
else ticks_per_beat = ((time_division >> 8) & 0x7f) /* SMTE frames/sec */ * (time_division & 0xff); /* ticks/SMTE frame */
if (logparse) {
fprintf (logfile, "Header size %" PRId32 "\n", rev_long(hdr->header_size));
fprintf (logfile, "Format type %d\n", rev_short(hdr->format_type));
fprintf (logfile, "Number of tracks %d\n", num_tracks);
fprintf (logfile, "Time division %04X\n", time_division);
fprintf (logfile, "Ticks/beat = %d\n", ticks_per_beat);
}
hdrptr += rev_long(hdr->header_size) + 8; /* point past header to track header, presumably. */
return;
}
/**************** Process a MIDI track header *******************/
void start_track (int tracknum) {
struct track_header *hdr;
unsigned long tracklen;
chk_bufdata(hdrptr, sizeof(struct track_header));
hdr = (struct track_header *) hdrptr;
if (!charcmp(hdr->MTrk,"MTrk")) midi_error("Missing 'MTrk'", hdrptr);
tracklen = rev_long(hdr->track_size);
if (logparse) fprintf (logfile, "\nTrack %d length %ld\n", tracknum, tracklen);
hdrptr += sizeof (struct track_header); /* point past header */
chk_bufdata(hdrptr, tracklen);
track[tracknum].trkptr = hdrptr;
hdrptr += tracklen; /* point to the start of the next track */
track[tracknum].trkend = hdrptr; /* the point past the end of the track */
}
/* Get a MIDI-style variable-length integer */
unsigned long get_varlen (uint8_t **ptr) {
/* Get a 1-4 byte variable-length value and adjust the pointer past it.
These are a succession of 7-bit values with a MSB bit of zero marking the end */
unsigned long val;
int i, byte;
val = 0;
for (i=0; i<4; ++i){
byte = *(*ptr)++;
val = (val<<7) | (byte&0x7f);
if (!(byte&0x80)) return val;
}
return val;
}
/*************** Process the MIDI track data ***************************/
/* Skip in the track for the next "note on", "note off" or "set tempo" command,
then record that information in the track status block and return. */
void find_note (int tracknum) {
unsigned long int delta_time;
int event, chan;
int i;
int note, velocity, parm;
int meta_cmd, meta_length;
unsigned long int sysex_length;
struct track_status *t;
/* process events */
t = &track[tracknum]; /* our track status structure */
while (t->trkptr < t->trkend) {
delta_time = get_varlen(&t->trkptr);
if (logparse) {
fprintf (logfile, "trk %d ", tracknum);
fprintf (logfile, delta_time ? "delta time %4ld, " : " ", delta_time);
}
t->time += delta_time;
if (*t->trkptr < 0x80) /* "running status" */ event = t->last_event;/* means same event as before */
else { /* new "status" (event type) */
event = *t->trkptr++;
t->last_event = event;
}
if (event == 0xff) { /* meta-event */
meta_cmd = *t->trkptr++;
meta_length = *t->trkptr++;
switch (meta_cmd) {
case 0x2f:
if (logparse) fprintf(logfile, "end of track\n");
break;
case 0x00:
if (logparse) fprintf(logfile, "sequence number %d\n", rev_short(*(unsigned short *)t->trkptr));
break;
case 0x20:
if (logparse) fprintf(logfile, "channel prefix %d\n", *t->trkptr);
break;
case 0x51: /* tempo: 3 byte big-endian integer! */
t->cmd = CMD_TEMPO;
t->tempo = rev_long(*(unsigned long *)(t->trkptr-1)) & 0xffffffL;
if (logparse) fprintf(logfile, "set tempo %ld usec/qnote\n", t->tempo);
t->trkptr += meta_length;
return;
case 0x54:
if (logparse) fprintf(logfile, "SMPTE offset %08" PRIx32 "\n", rev_long(*(unsigned long *)t->trkptr));
break;
case 0x58:
if (logparse) fprintf(logfile, "time signature %08" PRIx32 "\n", rev_long(*(unsigned long *)t->trkptr));
break;
case 0x59:
if (logparse) fprintf(logfile, "key signature %04X\n", rev_short(*(unsigned short *)t->trkptr));
break;
default: /* assume it is a string */
if (logparse) {
fprintf(logfile, "meta cmd %02X, length %d, \"", meta_cmd, meta_length);
for (i=0; i<meta_length; ++i) {
int ch = t->trkptr[i];
fprintf(logfile, "%c", isprint(ch) ? ch : '?');
}
fprintf(logfile, "\"\n");
}
if (tracknum==0 && meta_cmd==0x03 && !parseonly && !binaryoutput) {
/* Incredibly, MIDI has no standard for recording the name of the piece!
Track 0's "trackname" (meta 0x03) is sometimes used for that, so
we output it to the C file as documentation. */
fprintf(outfile, "// ");
for (i=0; i<meta_length; ++i) {
int ch = t->trkptr[i];
fprintf(outfile, "%c", isprint(ch) ? ch : '?');
}
fprintf(outfile, "\n");
}
break;
}
t->trkptr += meta_length;
}
else if (event <0x80) midi_error("Unknown MIDI event type", t->trkptr);
else {
chan = event & 0xf;
switch (event>>4) {
case 0x8:
t->note = *t->trkptr++;
velocity = *t->trkptr++;
note_off:
if (logparse) fprintf (logfile, "note %02X off, chan %d, velocity %d\n", t->note, chan, velocity);
if ((1<<chan) & channel_mask) { // if we're processing this channel
t->cmd = CMD_STOPNOTE;
return; /* stop processing and return */
}
break; // else keep looking
case 0x9:
t->note = *t->trkptr++;
velocity = *t->trkptr++;
if (velocity == 0) /* some scores use note-on with zero velocity for off! */ goto note_off;
if (logparse) fprintf (logfile, "note %02X on, chan %d, velocity %d\n", t->note, chan, velocity);
if ((1<<chan) & channel_mask) { // if we're processing this channel
t->cmd = CMD_PLAYNOTE;
return; /* stop processing and return */
}
break; // else keep looking
case 0xa:
note = *t->trkptr++;
velocity = *t->trkptr++;
if (logparse) fprintf (logfile, "after-touch %02X, %02X\n", note, velocity);
break;
case 0xb:
note = *t->trkptr++;
velocity = *t->trkptr++;
if (logparse) fprintf (logfile, "control change %02X, %02X\n", note, velocity);
break;
case 0xc:
note = *t->trkptr++;
if (logparse) fprintf(logfile, "program patch %02X\n", note);
break;
case 0xd:
chan = *t->trkptr++;
if (logparse) fprintf(logfile, "channel after-touch %02X\n", chan);
break;
case 0xe:
note = *t->trkptr++;
velocity = *t->trkptr++;
if (logparse) fprintf(logfile, "pitch wheel change %02X, %02X\n", note, velocity);
break;
case 0xf:
sysex_length = get_varlen(&t->trkptr);
if (logparse) fprintf(logfile, "SysEx event %02X, %ld bytes\n", event, sysex_length);
t->trkptr += sysex_length;
break;
default:
midi_error("Unknown MIDI command", t->trkptr);
}
}
}
t->cmd = CMD_TRACKDONE; /* no more notes to process */
++tracks_done;
}
#define MAXPATH 120
int ProcessMidiFile (char* filebasename) {
int i;
int tracknum = 0;
int earliest_tracknum = 0;
unsigned long earliest_time = 0;
int notes_skipped = 0;
char filename[MAXPATH];
// set static variables to default
outfile_bytecount = 0;
outfile_itemcount = 0;
tracks_done = 0;
num_tonegens_used = 0;
timenow = 0;
tempo = 0;
ticks_per_beat = 240;
channel_mask = 0xffff;
memset (track, 0, sizeof (track));
memset (tonegen, 0, sizeof (tonegen));
/* Open the input file */
strncpy(filename, filebasename, MAXPATH);
strncat(filename, ".mid", MAXPATH);
infile = fopen(filename, "rb");
if (!infile) {
fprintf(stderr, "Unable to open input file %s", filename);
return 1;
}
/* Read the whole input file into memory */
fseek(infile, 0, SEEK_END); /* find file size */
buflen = ftell(infile);
fseek(infile, 0, SEEK_SET);
buffer = (unsigned char *) malloc (buflen+1);
if (!buffer) {
fprintf(stderr, "Unable to allocate %ld bytes for the file", buflen);
return 1;
}
i = fread(buffer, buflen, 1, infile);
fclose(infile);
if (logparse) fprintf(logfile, "Processing %s, %ld bytes\n", filename, buflen);
/* Create the output file */
if (!parseonly) {
/*
strncpy(filename, filebasename, MAXPATH);
if (binaryoutput) {
strncat(filename, ".bin", MAXPATH);
outfile = fopen(filename, "wb");
}
else {
strncat(filename, ".c", MAXPATH);
outfile = fopen(filename, "w");
}
if (!outfile) {
fprintf(stderr, "Unable to open output file %s", filename);
return 1;
}
*/
if (!binaryoutput) { /* create header of C file that initializes score data */
time_t rawtime;
struct tm *ptime;
time (&rawtime);
fprintf(outfile, "// Playtune bytestream for file \"%s.mid\" ", filebasename);
fprintf(outfile, "created by MIDITONES V%s on %s", VERSION, asctime(localtime(&rawtime)));
// print_command_line(argc,argv);
if (channel_mask != 0xffff)
fprintf(outfile, "// Only the masked channels were processed: %04X\n", channel_mask);
if (keyshift != 0)
fprintf(outfile, "// Keyshift was %d chromatic notes\n", keyshift);
// if (directory) {
fprintf(outfile, "const unsigned char score%d [] = {\n", file_count++);
// } else
// fprintf(outfile, "const unsigned char score [] = {\n");
}
}
/* process the MIDI file header */
hdrptr = buffer; /* pointer to file and track headers */
process_header ();
printf (" Processing %d tracks.\n", num_tracks);
if (num_tracks > MAX_TRACKS) midi_error ("Too many tracks", buffer);
/* initialize processing of all the tracks */
for (tracknum=0; tracknum < num_tracks; ++tracknum) {
start_track (tracknum); /* process the track header */
find_note (tracknum); /* position to the first note on/off */
/* if we are in "parse only" mode, do the whole track,
so we do them one at a time instead of time-synchronized. */
if (parseonly) while (track[tracknum].cmd != CMD_TRACKDONE) find_note(tracknum);
}
/* Continue processing all tracks, in an order based on the simulated time.
This is not unlike multiway merging used for tape sorting algoritms in the 50's! */
tracknum = 0;
if (!parseonly) do { /* while there are still track notes to process */
struct track_status *trk;
struct tonegen_status *tg;
int tgnum;
int count_tracks;
unsigned long delta_time, delta_msec;
/* Find the track with the earliest event time,
and output a delay command if time has advanced.
A potential improvement: If there are multiple tracks with the same time,
first do the ones with STOPNOTE as the next command, if any. That would
help avoid running out of tone generators. In practice, though, most MIDI
files do all the STOPNOTEs first anyway, so it won't have much effect.
*/
earliest_time = 0x7fffffff;
/* Usually we start with the track after the one we did last time (tracknum),
so that if we run out of tone generators, we have been fair to all the tracks.
The alternate "strategy1" says we always start with track 0, which means
that we favor early tracks over later ones when there aren't enough tone generators.
*/
count_tracks = num_tracks;
if (strategy1) tracknum = num_tracks; /* beyond the end, so we start with track 0 */
do {
if (++tracknum >= num_tracks) tracknum=0;
trk = &track[tracknum];
if (trk->cmd != CMD_TRACKDONE && trk->time < earliest_time) {
earliest_time = trk->time;
earliest_tracknum = tracknum;
}
}
while (--count_tracks);
tracknum = earliest_tracknum; /* the track we picked */
trk = &track[tracknum];
if (loggen) fprintf (logfile, "Earliest time is trk %d, time %ld\n", tracknum, earliest_time);
if (earliest_time < timenow) midi_error ("INTERNAL: time went backwards", trk->trkptr);
/* If time has advanced, output a "delay" command */
delta_time = earliest_time - timenow;
if (delta_time) {
/* Convert ticks to milliseconds based on the current tempo */
delta_msec = ((unsigned long) delta_time * tempo) / ticks_per_beat / 1000;
if (loggen) fprintf (logfile, "->Delay %ld msec (%ld ticks)\n", delta_msec, delta_time);
if (delta_msec > 0x7fff) {
//delta_msec = 0x3FF;
midi_error ("INTERNAL: time delta too big", trk->trkptr);
}
/* output a 15-bit delay in big-endian format */
if (binaryoutput) {
putc ((unsigned char) (delta_msec >> 8), outfile);
putc ((unsigned char) (delta_msec & 0xff), outfile);
outfile_bytecount += 2;
}
else {
fprintf (outfile, "%ld,%ld, ", delta_msec >> 8, delta_msec & 0xff);
outfile_items(2);
}
}
timenow = earliest_time;
/* If this track event is "set tempo", just change the global tempo.
That affects how we generate "delay" commands. */
if (trk->cmd == CMD_TEMPO) {
tempo = trk->tempo;
if (loggen) fprintf (logfile, "Tempo changed to %ld usec/qnote\n", tempo);
find_note (tracknum);
}
/* If this track event is "stop note", process it and all subsequent "stop notes" for this track
that are happening at the same time. Doing so frees up as many tone generators as possible. */
else if (trk->cmd == CMD_STOPNOTE) do {
// stop a note
for (tgnum=0; tgnum < num_tonegens; ++tgnum) { /* find which generator is playing it */
tg = &tonegen[tgnum];
if (tg->playing && tg->track == tracknum && tg->note == trk->note) {
if (loggen) fprintf (logfile, "->Stop note %02X, generator %d, track %d\n", tg->note, tgnum, tracknum);
if (binaryoutput) {
putc (CMD_STOPNOTE | tgnum, outfile);
outfile_bytecount += 1;
}
else {
fprintf (outfile, "0x%02X, ", CMD_STOPNOTE | tgnum);
outfile_items (1);
}
tg->playing = false;
trk->tonegens[tgnum] = false;
}
}
find_note (tracknum); // use up the note
}
while (trk->cmd == CMD_STOPNOTE && trk->time == timenow);
/* If this track event is "start note", process only it.
Don't do more than one, so we allow other tracks their chance at grabbing tone generators. */
else if (trk->cmd == CMD_PLAYNOTE) {
bool foundgen = false;
if (strategy2) { /* try to use the same tone generator this track used last time */
tg = &tonegen [trk->preferred_tonegen];
if (!tg->playing) {
tgnum = trk->preferred_tonegen;
foundgen = true;
}
}
if (!foundgen) for (tgnum=0; tgnum < num_tonegens; ++tgnum) { /* search for a free tone generator */
tg = &tonegen[tgnum];
if (!tg->playing) {
foundgen = true;
break;
}
}
if (foundgen) {
int shifted_note;
if (tgnum+1 > num_tonegens_used) num_tonegens_used = tgnum+1;
tg->playing = true;
tg->track = tracknum;
tg->note = trk->note;
trk->tonegens[tgnum] = true;
trk->preferred_tonegen = tgnum;
if (loggen) fprintf (logfile, "->Start note %02X, generator %d, track %d\n", trk->note, tgnum, tracknum);
shifted_note = trk->note + keyshift;
if (shifted_note < 0) shifted_note = 0;
if (shifted_note > 127) shifted_note = 127;
if (binaryoutput) {
putc (CMD_PLAYNOTE | tgnum, outfile);
putc (shifted_note, outfile);
outfile_bytecount += 2;
}
else {
fprintf (outfile, "0x%02X,%d, ", CMD_PLAYNOTE | tgnum, shifted_note);
outfile_items(2);
}
}
else {
if (loggen) fprintf (logfile, "----> No free generator, skipping note %02X, track %d\n", trk->note, tracknum);
++notes_skipped;
}
find_note (tracknum); // use up the note
}
} /* !parseonly do */
while (tracks_done < num_tracks);
if (!parseonly) {
// generate the end-of-score command and some commentary
if(binaryoutput) putc(CMD_STOP, outfile);
else {
fprintf(outfile, "0x%02x};\n// This score contains %ld bytes, and %d tone generator%s used.\n", CMD_STOP, outfile_bytecount, num_tonegens_used, num_tonegens_used == 1 ? " is" : "s are");
if (notes_skipped) fprintf(outfile, "// %d notes had to be skipped.\n", notes_skipped);
}
printf (" %s %d tone generators were used.\n", num_tonegens_used < num_tonegens ? "Only":"All", num_tonegens_used);
if (notes_skipped) printf(" %d notes were skipped because there weren't enough tone generators.\n", notes_skipped);
printf (" %ld bytes of score data were generated.\n", outfile_bytecount);
}
}
int CreateFilename (const char * filebasename, char* filename, const char * name) {
char buf [MAXPATH];
strncpy (buf, name, MAXPATH);
char * tmp = strstr (buf, ".mid");
if (!tmp) return 0;
* tmp = '\0';
strncpy (filename, filebasename, MAXPATH);
strncat (filename, buf, MAXPATH);
return 1;
}
void AppendScores (FILE * outfile, int file_count) {
fprintf (outfile, "\nconst unsigned char * const scores[] = {\n");
int i;
for (i=0; i<file_count; i++) {
fprintf (outfile, "score%d, ", i);
}
fprintf (outfile, "0\n};\n");
fclose (outfile);
}
/********************* main ****************************/
int main(int argc,char *argv[]) {
int argno;
char *filebasename;
char filename[MAXPATH];
DIR * mdir; struct dirent * mdirent;
printf("MIDITONES V%s, (C) 2011 Len Shustek\n", VERSION);
printf("See the source code for license information.\n\n");
if (argc == 1) { /* no arguments */
SayUsage(argv[0]);
return 1;
}
/* process options */
argno = HandleOptions(argc,argv);
filebasename = argv[argno];
/* Open the log file */
if (logparse || loggen) {
strncpy(filename, filebasename, MAXPATH);
strncat(filename, ".log", MAXPATH);
logfile = fopen(filename, "w");
if (!logfile) {
fprintf(stderr, "Unable to open log file %s", filename);
return 1;
}
}
if (directory) {
mdir = opendir (filebasename);
if (!mdir) return 1;
outfile = fopen ("melody.c", "w");
if (!outfile) return 1;
while (1) {
mdirent = readdir (mdir);
if (!mdirent) break;
int result = CreateFilename (filebasename, filename, mdirent->d_name);
if (!result) continue;
printf ("Process: \"%s\"\n", filename);
ProcessMidiFile (filename);
}
/*
fprintf (outfile, "\nconst unsigned char * scores[] = {\n");
int i;
for (i=0; i<file_count; i++) {
fprintf (outfile, "score%d, ", i);
}
fprintf (outfile, "0\n};\n");
fclose (outfile);
*/
AppendScores (outfile, file_count);
closedir (mdir);
} else {
if (!parseonly) {
strncpy(filename, filebasename, MAXPATH);
if (binaryoutput) {
strncat(filename, ".bin", MAXPATH);
outfile = fopen(filename, "wb");
}
else {
strncat(filename, ".c", MAXPATH);
outfile = fopen(filename, "w");
}
if (!outfile) {
fprintf(stderr, "Unable to open output file %s", filename);
return 1;
}
}
ProcessMidiFile (filebasename);
AppendScores (outfile, 1);
//fclose (outfile);
}
printf (" Done.\n");
return 0;
}

70
midi/tone.cpp Normal file
View file

@ -0,0 +1,70 @@
#include "tone.h"
/**
* Přidán attack - zmizí rušivé lupání, prodlouží se obsluha tónu.
* */
extern "C" const short onePeriod[];
extern "C" const unsigned int midiTones[];
extern "C" const unsigned int attackTable[];
static constexpr unsigned defFall = 16u;
static constexpr unsigned maxAttack = 127u;
Tone::Tone() noexcept {
ampl = 0; freq = 0; base = 0; atck = 0;
fall = defFall;
}
void Tone::setAmpl (unsigned int a) {
ampl = a;
}
void Tone::setFreq (unsigned int f) {
freq = f;
}
void Tone::setMidiOn (unsigned int m) {
freq = midiTones [m & 0x7F];
if (freq) atck = maxAttack;
fall = 1;
}
void Tone::setMidiOff (void) {
fall = defFall;
/*
base = 0;
freq = 0;
*/
}
void Tone::setFall (unsigned int f) {
fall = f;
}
int Tone::step (void) {
unsigned int k,t;
int y;
// Spočteme index x pro přístup do tabulky
const unsigned x = (base >> 16) & 0xFF;
y = onePeriod [x]; // vzorek vezmeme z tabulky
// k je horní půlka amplitudy
k = ampl >> 16;
y *= k; // vzorek násobíme amplitudou (tedy tím vrškem)
y >>= 12; // a vezmeme jen to, co potřebuje DAC
k *= fall; // Konstanta fall určuje rychlost poklesu amplitudy,
// čím více, tím je rychlejší. Pokud by bylo 1, pokles je 2^16 vzorků, což už je pomalé.
base += freq; // časová základna pro další vzorek
if (atck) { // přidán attack = náběh amplitudy
t = attackTable [atck]; // z tabulky
if (t > ampl) ampl = t; // prevence lupání - nemí být skok amplitudy
atck -= 1; // dočasovat k nule
} else
ampl -= k; // exponenciální pokles amplitudy
// a je to
return y;
}

26
midi/tone.h Normal file
View file

@ -0,0 +1,26 @@
#ifndef TONE_H
#define TONE_H
class Tone {
public:
explicit Tone () noexcept;
void setMidiOn (unsigned int m);
void setMidiOff (void);
void setFreq (unsigned int f);
void setAmpl (unsigned int a);
void setFall (unsigned int f);
int step (void);
private:
/// Amplituda tónu, interní proměnná
unsigned int ampl;
/// Exponenciální doběh - čím víc, tím rychlejší (0 = stálý)
unsigned int fall;
/// Frekvence (normalizovaná)
unsigned int freq;
/// Přetékající index do tabulky vzorků
unsigned int base;
/// Attack = index do tabulky attackTable
unsigned int atck;
};
#endif // TONE_H

88
stm32f051/pcmdma.cpp Normal file
View file

@ -0,0 +1,88 @@
#include "STM32F0x1.h"
#include "CortexM0.h"
#include "gpio.h"
#include "pcmdma.h"
typedef __SIZE_TYPE__ size_t;
/* TIMER:
* fs = 8000Hz, ft = 3 * fs = 24000Hz
* reload = SystemCoreClock / ft = 48000000Hz / 24000Hz = 2000
* PINY : +PA9[AF2], -PB0[AF2] => TIM1:CH2
* DMA : TIM1_UP = 5
*/
static void Dma1Ch5Init (void * addr) {
// Configure the peripheral data register address etc
DMA1. CPAR5.R = reinterpret_cast<size_t> (& (TIM1.CCR2));
DMA1. CMAR5.R = reinterpret_cast<size_t> (addr);
DMA1.CNDTR5.R = FULL_LEN;
// Configure increment, size, interrupts and circular mode
DMA1.CCR5.modify([](auto & ccr) -> auto {
ccr.B.MINC = SET;
ccr.B.MSIZE = 1u;
ccr.B.PSIZE = 1u;
ccr.B.DIR = SET;
ccr.B.HTIE = SET; // Po půlce přerušit.
ccr.B.TCIE = SET; // Po dokončení přerušit.
ccr.B.CIRC = SET;
ccr.B.EN = RESET;
return ccr.R;
});
}
static PcmDma * PcmDmaInstance = nullptr;
PcmDma::PcmDma() noexcept : pL(buffer), pH(buffer + HALF_LEN) {
PcmDmaInstance = this;
for (unsigned n=0; n<FULL_LEN; n++) buffer[n] = MAXPWM >> 1;
GpioClass pin1p (GpioPortA, 9, GPIO_Mode_AF);
GpioClass pin1n (GpioPortB, 0, GPIO_Mode_AF);
pin1p.setAF (2);
pin1n.setAF (2);
// 1. Enable clock peripheral
RCC.APB2ENR.B.TIM1EN = SET;
RCC.AHBENR. B.DMA1EN = SET;
// 2. Timer
TIM1.PSC.R = 0u;
TIM1.ARR.R = MAXPWM - 1;
TIM1.RCR.R = 0u;
// OC preload, CC output, Mode 6 = PWM1
TIM1.CCMR1_Output.modify([](TIM1_Type::CCMR1_Output_DEF & r) -> auto {
r.B.OC2PE = SET;
r.B.OC2M = 6u;
return r.R;
});
// povol pin + negaci
TIM1.CCER.modify([](TIM1_Type::CCER_DEF & r) -> auto {
r.B.CC2E = SET;
r.B.CC2NE = SET;
return r.R;
});
// Set Output, dead time
TIM1.BDTR.modify([](TIM1_Type::BDTR_DEF & r) -> auto {
r.B.DTG = 48u; // dead: 1 us
r.B.MOE = SET; // Main output enable
//r.B.OSSR = 1u; // Off-state selection for Run mode - TODO
return r.R;
});
// Preload
TIM1.CR1.modify([](TIM1_Type::CR1_DEF & r) -> auto {
r.B.ARPE = SET; // TIM1_ARR register is buffered
r.B.URS = SET; // Only counter overflow/underflow generates an update DMA request
return r.R;
});
/* Update DMA request enable
* Spustíme DMA - sice budou dlouhé buffery, ale přerušení jen po 20ms */
TIM1.EGR.B.UG = SET; // Reinitialize the counter and generates an update of the registers
TIM1.DIER.B.UDE = SET; // Update DMA request enabled
Dma1Ch5Init (buffer);
// 3. NVIC
NVIC_EnableIRQ (DMA1_CH4_5_6_7_DMA2_CH3_4_5_IRQn);
TIM1.CR1.R |= 1u; // enable TIM1 (překladač bohužel bere poslední bit jako half, registr to neunese)
DMA1.CCR5.R |= 1u; // enable DMA (dtto)
}
// Přerušení od DMA
extern "C" void DMA1_CH4_5_6_7_DMA2_CH3_4_5_IRQHandler (void) {
DMA1_Type::ISR_DEF status (DMA1.ISR);
DMA1.IFCR.R = status.R; // clear flags
if (!PcmDmaInstance) return;
if (status.B.HTIF5 != RESET) PcmDmaInstance->send(false);
else if (status.B.TCIF5 != RESET) PcmDmaInstance->send(true);
}