
QingKeV2 Microprocessor Debug Manual
V1.0

Overview
QingKe V2 series microprocessor is a 32-bit general-purpose MCU microprocessor based on the standard RISC-V
instruction set RV32I subset RV32E, with only 16 general-purpose registers, half of RV32I, and a more streamlined
structure for deep embedded scenarios. V2 series supports standard RV32EC instruction extensions, in addition to
custom XW extensions, Hardware Prologue/Epilogue (HPE), Vector Table Free (VTF), a more streamlined single-
wire serial debug interface (SDI), and support for "WFE" instructions.
QingKe V2 series microprocessor supports online debugging. The debug module conforms to the RISC-V debug
specification and enables online debugging of the microprocessor through a more streamlined single-wire debug
interface. This manual will introduce in detail the debug transport protocol of the debug interface, the debug module
and its operation method.

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 1

Chapter 1 Overview

The simple block diagram of the debug system is shown in Figure 1-1 below. A debug module is designed inside
the QingKe V2 microprocessor, and the debug module can implement functions such as halt, reset and resume of
the microprocessor. It also accesses the General-purpose Registers (GPRs) and Control Status Registers (CSRs)
inside the processor and memory or peripherals mapped to specific functions, etc. by means of abstract commands
or Program Buffer.

Figure 1-1 Debug system block diagram

Reset/halt
Control

Abstract
commands

Program
Buffers(8)

Debug Module Debug module interface

GPRs

CSRs

MEM

Debug Host(PC)
Debug Transport Hardware

(WCH-LINK)
USB

SWIO(Single Line)

The debug module communicates with the debug transmission device through the single-wire debug interface. The
debug transmission device is usually WCH-LINK, which uses USB communication with the debug host and
communicates with the debug module through the single-wire interface to control and query the microprocessor
status to achieve debug functions.

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 2

Chapter 2 Debug Transport Protocol

The debug transmission device and the debug module communicate with each other using single-line transmission.
The transmission protocol defines the packet format for accessing the relevant registers of the debug module, which
is described in detail as follows.

2.1 Packet Format
The debug module register operations need to be accessed in the following format, mainly including two packet
types New Packet and Bypass Packet.

Figure 2-1 Data packet format

0 6 5-1 0 0 31 30 29 28-1 0 0

1 addr rw Data check

Data check0

bits

New Packet

Byp Packet

New Packet composition:
(1) 1bit start bit, fixed as data 1.
(2) 7bit address bit, set the access register address, MSB priority.
(3) 1bit read/write control bit, 1 host write, 0 host read.
(4) 32bit data, MSB priority.
(5) 1bit even parity bit, this bit is optional data bit, if the stop character is sent directly after the last bit of the data

bit, then no parity bit is transmitted.

Bypass Packet composition:
(1) 1bit start bit, fixed as data 0.
(2) 32bit data bits, MSB priority, read/write bits and register addresses are the same as the most recent New Packet

transfer.
(3) 1bit even parity bit, this bit is optional data bit, if the stop character is sent directly after the last bit of the data

bit, then no parity bit is transmitted.

2.2 Bit Definition
Due to the single-wire debug interface, there is only one data line, and the data bit, stop bit and reset signal are
judged according to the level and duration. The bus is high when it is idle, and the reset signal can be generated
when the bus low level lasts for a certain time.
The debugging interface supports two different speed modes with slightly different timings in different modes, as
detailed below.

(1) Fast mode 1x
Let the clock period of the slave debug interface be T. The timing sequence in fast mode is shown in Figure 2-2
below.

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 3

l Stop bit: a sustained high level of 10T will generate a stop bit.
l Data 1: Low level time (T, 2T), high level time (T, 8T).
l Data 0: Low level time (4T, 32T), high level time (T, 8T).

Figure 2-2 Fast mode signal timing
T

(10T,inf)

(T,2T)
(T,8T)

(4T,32T)
(T,8T)

Clock

Stop Bit

Data 1

Data 0

(2) Normal mode 2x
Let the clock period of the slave debug interface be T. The timing in fast mode is shown in Figure 2-3 below, which
is the default mode after reset.
l Stop bit: a sustained high level of 18T will generate a stop bit.
l Data 1: Low level time (T, 4T), high level time (T, 16T).
l Data 0: Low level time (6T, 64T), high level time (T, 16T)

Figure 2-3 Medium speed mode signal timing
T

(18T,inf)

(T,4T)
(T,16T)

(6T,64T)
(T,16T)

Clock

Stop Bit

Data 1

Data 0

2.3 Debug Interface Registers
The debug interface speed mode and enable are configured by the relevant registers, which are coded using 7-bit
addresses as follows.

Table 2-1 Debug interface registers
Name Access address Description
CPBR 0x7C Capability Register
CFGR 0x7D Configuration Register

SHDWCFGR 0x7E Shadow Configuration Register

The debug interface speed mode and enable are configured by the relevant registers, which are coded using 7-bit
addresses as follows.

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 4

Capability Register (CPBR)
Bit Name Access Description Reset value

[31:16] VERSION RO Version number. 0x0001
[15:13] Reserved RO Reserved 0

[12:11] IOMODE R0

Debug I/O port support mode:
00: IO_FREE mode；
01: IO_FREE and Single_IO mode；
10: IO_FREE, Single_IO, Dual_IO mode
11: IO_FREE, Single_IO, Dual_IO, Quad_IO mode。
Note: The current version only supports IO_FREE mode.

0

10 OUTSTA RO
Output function status.
0: The debug slave does not have output function.
1: The debug slave has output function.

0

9 CMDEXTENSTA R0

Command code extension function.
0: The debug slave does not have command code
extension function.
1: The debug slave has command code extension
function.
Note: This feature is not supported in the current version.

0

8 CHECKSTA RO

CRC8 checksum function.
0: The debug slave does not have CRC8 checksum
function, only even checksum.
1: The debug slave supports CRC8 and even parity.
Note: The current version only supports even parity.

0

[7:6] Reserved RO Reserved

[5:4] SOPN RO

Stop sign factor.
00: At least 8 times the time base.
01: At least 16 times the time base.
10: At least 32 times the time base.
11: At least 64 times the time base.
Note: Currently, only 8x mode is supported.

0

[3:2] Reserved RO Reserved 0

[1:0] TDIV RO

Clock division factor:
00: Divided by 1;
01: Divided by 2;
Others: Reserved.

0b01

Configuration Register (CFGR)

Bit Name Access Description Reset value

[31:16] KEY RW
Key register:
Write the register to 0x5AA5 simultaneously.

0

[15:13] Reserved RO Reserved 0

[12:11] IOMODECFG RW
Debug I/O port support mode:
00: IO_FREE mode;

0

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 5

01: IO_FREE and Single_IO mode;
10: IO_FREE, Single_IO, Dual_IO mode;
11: IO_FREE, Single_IO, Dual_IO, Quad_IO mode.
Note: The current version only supports IO_FREE mode.

10 OUTEN RW
Output function status.
0: The debug slave does not have output function.
1: The debug slave has output function.

0

9 CMDEXTEN RW

Command code extension function.
0: The debug slave does not have command code
extension function.
1: The debug slave has command code extension function.
Note: This feature is not supported in the current version.

0

8 CHECKEN RW

CRC8 checksum function.
0: The debug slave does not have CRC8 checksum
function, only even checksum.
1: The debug slave supports CRC8 and even parity.
Note: The current version only supports even parity.

0

[7:6] Reserved RO Reserved

[5:4] SOPNCFG RO

Stop sign factor.
00: At least 8 times the time base.
01: At least 16 times the time base.
10: At least 32 times the time base.
11: At least 64 times the time base.
Note: Currently, only 8x mode is supported.

0

[3:2] Reserved RO Reserved 0

[1:0] TDIVCFG RO

Clock division factor:
00: Divided by 1;
01: Divided by 2;
Others: Reserved.

0

Shadow Configuration Register (SHDWCFGR)

Bit Name Access Description Reset value

[31:16] KEY RW
Key register:
Write the register to 0x5AA5 simultaneously.

0

[15:13] Reserved RO Reserved 0

[12:11] IOMODECFG RW

Debug I/O port support mode:
00: IO_FREE mode；
01: IO_FREE and Single_IO mode；
10: IO_FREE, Single_IO, Dual_IO mode
11: IO_FREE, Single_IO, Dual_IO, Quad_IO mode。
Note: The current version only supports IO_FREE mode.

0

10 OUTEN RW
Output function status.
0: The debug slave does not have output function.
1: The debug slave has output function.

0

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 6

9 CMDEXTEN RW

Command code extension function.
0: The debug slave does not have command code
extension function.
1: The debug slave has command code extension
function.
Note: This feature is not supported in the current version.

0

8 CHECKEN RW

CRC8 checksum function.
0: The debug slave does not have CRC8 checksum
function, only even checksum.
1: The debug slave supports CRC8 and even parity.
Note: The current version only supports even parity.

0

[7:6] Reserved RO Reserved

[5:4] SOPNCFG RO

Stop sign factor.
00: At least 8 times the time base.
01: At least 16 times the time base.
10: At least 32 times the time base.
11: At least 64 times the time base.
Note: Currently, only 8x mode is supported.

0

[3:2] Reserved RO Reserved 0

[1:0] TDIVCFG RO

Clock division factor:
00: Divided by 1;
01: Divided by 2;
Others: Reserved.

0

2.4 Configuration Examples
The host can set the capability of the debug interface through the configuration register CFGR and the shadow
configuration register SHDWCFGR in cooperation, and query whether it takes effect through the capability register
CPBR. When setting, first set the corresponding bit of SHDWCFGR and then set the corresponding bit field of
CFGR to set the corresponding configuration bit of the shadow configuration register to take effect, while other
configuration bits remain unchanged. For example:
(1) Enable slave output

1. Set SHDWCFGR to 0x5AA50400 and enable the shadow configuration register output to position 1.
2. Set CFGR to 0x5AA50400, update the shadow configuration register output enable bit to the

configuration register, and leave the other bits of the configuration register unchanged.
(2) Configure the time base crossover factor to 1 division

1. set SHDWCFGR to 0x5AA50000 and set shadow configuration register TDIVCFG to 0b00.
2. Set CFGR to 0x5AA50003, update the shadow configuration register TDIVCFG bit field to the

configuration register, and leave the other bits in the configuration register unchanged.
(3) Reset debug interface
In IO_FREE mode, reset timing for the bus pull down more than 32 times the time base, and regardless of the mode,
the bus pull down more than 256 times the time base, fixed can reset the debug interface. After reset, the speed is
changed to two-division mode, i.e. normal mode 2x.
The debug interface clock may vary from hardware platform to hardware platform, for example, CH32V003 defaults
to 3 divisions of the internal high-speed clock 24MHz for its clock, which is 8MHz.

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 7

Chapter 3 Debug Module

QingKe V2 series microprocessors include a hardware debug module that supports complex debugging operations.
When the microprocessor is halted, the debug module can access the microprocessor's GPRs, CSRs, Memory,
external devices, etc. through abstract commands, program buffer deployment instructions, etc. The debug module
can halt and resume the microprocessor's operation.
The debug module follows the RISC-V External Debug Support Version0.13.2 specification, detailed
documentation can be downloaded from RISC-V International website.

3.1 Debug Module
The debug module inside the microprocessor, capable of performing debug operations issued by the debug host,
includes.
l Access to registers through the debug interface
l Reset, halt and resume the microprocessor through the debug interface
l Read and write memory, instruction registers and external devices through the debug interface
l Deploy multiple arbitrary instructions through the debug interface
l Set software breakpoints through the debug interface
l Support abstract command auto-execution
l Support single-step debugging

The internal registers of the debug module use a 7-bit address code, and the following registers are implemented
inside QingKe V2 series microprocessors.

Table 3-1 Debug module register list
Name Access address Description
data0 0x04 Data register 0, can be used for temporary storage of data
data1 0x05 Data register 1, can be used for temporary storage of data

dmcontrol 0x10 Debug module control register
dmstatus 0x11 Debug module status register
hartinfo 0x12 Microprocessor status register

abstractcs 0x16 Abstract command status register
command 0x17 Abstract command register

abstractauto 0x18 Abstract command auto-execution
progbuf0-7 0x20-0x27 Instruction cache registers 0-7
haltsum0 0x40 Halt status register

The debug host can control the microprocessor's halt, resume, reset, etc. by configuring the dmcontrol register. The
RISC-V standard defines three types of abstract commands: access registers, fast access, and access memory.
QingKe V2 microprocessor supports register (GPRs, CSRs, FPRs) access through abstract commands.
The debug module implements eight instruction cache registers progbuf0-7, and the debug host can cache multiple
instructions (which can be compressed instructions) to the buffer, and can choose to continue to execute the
instructions in the instruction cache registers after executing the abstract command or execute the cached
instructions directly. It should be noted that if the instruction in progbufs is less than 32 bytes, the last instruction
needs to be an "ebreak" or "c.ebreak" instruction, and if the instruction fills 32 bytes, the debug module

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 8

automatically adds an "ebreak" instruction. The debug host can access the abstract command and the instructions
cached in the progbufs, and also the storage, peripherals, etc.

Each register is described in detail as follows.
Abstract Data 0 (data0)

Table 3-2 data0 definition
Bit Name Access Description Reset Value

[31:0] data0 RW Data register 0, used for temporary storage of data 0

Abstract Data 1 (data1)

Table 3-3 data1 definition
Bit Name Access Description Reset Value

[31:0] data1 RW Data register 1, used for temporary storage of data 0

Debug Module Control (dmcontrol)
This register controls the halt, reset, and resume of the microprocessor. Debug host write data to the corresponding
field to achieve halt (haltreq), reset (ndmreset), resume (resumereq). You describe into the following.

Table 3-4 dmcontrol definition
Bit Name Access Description Reset Value

31 haltreq WO
0: Clear the halt request
1: Send a halt request

0

30 resumereq W1

0: Invalid
1: Restore the current microprocessor
Note: Write 1 is valid and the hardware is cleared after
the microprocessor is recovered

0

29 Reserved RO Reserved 0

28 ackhavereset W1
0: Invalid
1: Clear the haverest status bit of the microprocessor

0

[27:2] Reserved RO Reserved 0

1 ndmreset RW
0: Clear reset
1: Reset the entire system other than the debug module

0

0 dmactive RW
0: Reset debug module
1: Debug module works properly

0

Debug Module Status (dmstatus)
This register is used to indicate the status of the debug module and is a read-only register with the following
description of each bit.

Table 3-5 dmstatus definition
Bit Name Access Description Reset Value

[31:20] Reserved RO Reserved 0

19 allhavereset RO
0: Invalid
1: Microprocessor reset

0

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 9

18 anyhavereset RO
0: Invalid
1: Microprocessor reset

0

17 allresumeack RO
0: Invalid
1: Microprocessor reset

0

16 anyresumeack RO
0: Invalid
1: Microprocessor reset

0

[15:14] Reserved RO Reserved 0

13 allavail RO
0: Invalid
1: Microprocessor is not available

0

12 anyavail RO
0: Invalid
1: Microprocessor is not available

0

11 allrunning RO
0: Invalid
1: Microprocessor is running

0

10 anyrunning RO
0: Invalid
1: Microprocessor is running

0

9 allhalted RO
0: Invalid
1: Microprocessor is in suspension

0

8 anyhalted RO
0: Invalid
1: Microprocessor out of suspension

0

7 authenticated RO
0: Authentication is required before using the
debug module
1: The debug module has been certified

0x1

[6:4] Reserved RO Reserved 0

[3:0] version RO
Debug system support architecture version
0010: V0.13

0x2

Hart Info (hartinfo)
This register is used to provide information about the microprocessor to the debug host and is a read-only register
with each bit described as follows.

Table 3-6 hartinfo definition
Bit Name Access Description Reset Value

[31:24] Reserved RO Reserved 0
[23:20] nscratch RO Number of dscratch registers supported 0x2
[19:17] Reserved RO Reserved 0

16 dataaccess RO
0: Data register is mapped to CSR address
1: Data register is mapped to memory address

0x1

[15:12] datasize RO Number of data registers 0x2

[11:0] dataaddr RO
Data register data0 offset address, the base address
is 0xe0000000

0x0f4

Abstract Control and Status (abstractcs)

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 10

This register is used to indicate the execution of the abstract command. The debug host can read this register to
know whether the last abstract command is executed or not, and can check whether an error is generated during the
execution of the abstract command and the type of the error, which is described in detail as follows.

Table 3-7 abstractcs definitions
Bit Name Access Description Reset Value

[31:29] Reserved RO Reserved 0

[28:24] progbufsize RO
Indicates the number of program buffer program cache
registers

0x8

[23:13] Reserved RO Reserved 0

12 busy RO
0: No abstract command is executing
1: There are abstract commands being executed
Note: After execution, the hardware is cleared.

0

11 Reserved RO Reserved 0

[10:8] cmder RW

Abstract command error type
000: No error
001: Abstract command execution to write to
command, abstractcs, abstractauto registers or read
and write to data and progbuf registers
010: Does not support current abstract command
011: Execution of abstract command with exception
100: The microprocessor is not halted or unavailable
and cannot execute abstract commands
101: Bus error
110: Parity bit error during communication
111: Other errors
Note: For bit writing 1 is used to clear the zero.

0

[7:4] Reserved RO Reserved 0
[3:0] datacount RO Number of data registers 0x2

Abstract Command (command)
The debug host can access the GPRs, FPRs, and CSRs registers inside the microprocessor by writing different
configuration values in the abstract command registers.
When accessing the registers, the command register bits are defined as follows.

Table 3-8 Definition of command when accessing registers
Bit Name Access Description Reset Value

[31:24] cmdtype WO

Abstract command type
0: Access register
1: Quick access (not supported)
2: Access to memory (not supported)

0

23 Reserved WO Reserved 0

[22:20] aarsize WO
Access register data bit width
000: 8-bit

0

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 11

001: 16-bit
010: 32-bit
011: 64-bit (not supported)
100: 128-bit (not supported)
Note: When accessing floating-point registers
FPRs, only 32-bit access is supported.

19 aarpostincrement WO
0: No effect
1: Automatically increase the value of regno after
accessing the register

0

18 postexec WO
0: No effect
1：Execute the abstract command and then execute
the command in progbuf

0

17 transfer WO
0: Do not execute the operation specified by write
1: Execute the manipulation specified by write

0

16 write WO
0: Copy data from the specified register to data0
1: Copy data from data0 register to the specified
register

0

[15:0] regno WO

Specify access registers
0x0000-0x0fff are CSRs
0x1000-0x101f are GPRs
0x1020-0x103f are FPRs (not supported by V2)

0

Abstract Command Autoexec (abstractauto)
This register is used to configure the debug module so that the abstract command can be executed again when
reading and writing to the progbufx and datax of the debug module, which is described as follows.

Table 3-9 abstractauto definition
Bit Name Access Description Reset Value

[31:16] autoexecprogbuf RW

If a position 1, the corresponding read or write to
progbufx register will cause the abstract command in
the command register to be executed again.
Note: V2 series design 8 progbuf, corresponding to
bits [23:16].

0

[15:12] Reserved RO Reserved 0

[11:0] autoexecdata RW

If a position 1, the corresponding read or write to
datax register will cause the abstract command in the
command register to be executed again.
Note: V2 series design 2 data registers,
corresponding to bits [1:0].

0

Program Buffer X (progbufx)
This register is used to store any instruction, deploy the corresponding operation, including 8, need to pay attention
to the last execution needs to be "ebreak" or "c.ebreak".

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 12

Table 3-10 progbuf definition
Bit Name Access Description Reset Value

[31:0] progbuf RW
Instruction encoding for cache operations, which
may include compression instructions

0

Halt Summary 0 (haltsum0)
This register is used to indicate whether the microprocessor is halted or not. Each bit indicates the halted status of a
microprocessor, and when there is only one core, only the lowest bit of this register is used to indicate it.

Table 3-11 haltsum0 definition
Bit Name Access Description Reset Value

[31:1] Reserved RO Reserved 0

0 haltsum0 RO
0: Microprocessor operates normally
1: Microprocessor stop

0

In addition to the above-mentioned registers of the debug module, the debug function also involves some CSR
registers, mainly the debug control and status register dcsr and the debug instruction pointer dpc, which are
described in detail as follows.

Debug Control and Status (dcsr)

Table 3-12 dcsr definition
Bit Name Access Description Reset Value

[31:28] xdebugver DRO

0000: External debugging is not supported
0100: Support standard external debugging
1111: External debugging is supported, but does not meet
the specification

0x4

[27:16] Reserved DRO Reserved

15 ebreakm DRW

0: The ebreak command in machine mode behaves as
described in the privilege file
1: The ebreak command in machine mode can enter debug
mode

0

[14:13] Reserved DRO Reserved 0

12 ebreaku DRW

0: The ebreak command in user mode behaves as
described in the privilege file
1: The ebreak command in user mode can enter debug
mode

0

11 stepie DRW
0: Interrupts are disabled under single-step debugging
1: Enable interrupts under single-step debugging

0

10 Reserved DRO Reserved 0

9 stoptime DRW
0: System timer running in Debug mode
1: System timer stop in Debug mode

0

[8:6] cause DRO

Reasons for entering debugging
001: Entering debugging in the form of ebreak command
(priority 3)
010: Entering debugging in the form of trigger module

0

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 13

(priority 4, the highest)
011: Entering debugging in the form of halt request
(priority 1)
100: Entering debugging in the form of single-step
debugging (priority 0, the lowest)
101: Entering debug mode directly after microprocessor
reset (priority 2)
Others: Reserved.

[5:3] Reserved DRO Reserved 0

2 step DRW
0: Turn off single-step debugging
1: Enable single-step debugging

0

[1:0] prv DRW

Privilege mode
00: User mode
01: Supervisor mode (not supported)
10: Reserved
11: Machine mode
Note: Record the privileged mode when entering debug
mode, the debugger can modify this value to modify the
privileged mode when exiting debug.

0

Debug PC (dpc)
This register is used to store the address of the next instruction to be executed after the microprocessor enters debug
mode, and its value is updated with different rules depending on the reason for entering debug. dpc register is
described in detail as follows.

Table 3-13 dpc definitions
Bit Name Access Description Reset Value

[31:0] dpc DRW Command Address 0

The rules for updating the registers are shown in the following table.

Table 3-14 dpc update rules
Enter the debug method dpc Update rules

ebreak Address of the Ebreak instruction
single step Instruction address of the next instruction of the current instruction

trigger module Temporarily not supported
halt request Address of the next instruction to be executed when entering Debug

3.2 Operation Examples
Halt Microprocessor
This process is used to halt the microprocessor and proceeds as follows.

Table 3-15 Microprocessor suspension process
Debug register address R/W Value Description

Dmcontrol(0x10) W-1 0x80000001 Make the debug module work properly.

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 14

Dmcontrol(0x10) W-1 0x80000001 Initiate a halt request.

Dmstatus(0x11) R-0 rdata

Get the debug module status information, check
rdata[9:8], if the value is 0b11, it means the
processor enters the halt state normally, otherwise
it means it does not enter the halt state and needs
to continue to send the halt request to check the
status.

Dmcontrol(0x10) W-1 0x00000001 Clear the halt request bit.

Resume Microprocessor
This process is used to resume a microprocessor that is in suspension, and the steps are as follows.

Table 3-16 Microprocessor resume process
Debug register address R/W Value Description

Dmcontrol(0x10) W-1 0x80000001 Make the debug module work properly.
Dmcontrol(0x10) W-1 0x80000001 Initiate a halt request.
Dmcontrol(0x10) W-1 0x00000001 Clear the halt request bit.

Dmcontrol(0x10) W-1 0x40000001
Initiate a resume request. The resume request bit is
valid for writing 1, and the hardware clears 0 after
recovery.

Dmstatus(0x11) R-0 rdata
Get the debug module status information, check
rdata[17:16], if the value is 0b11, it means the processor
has recovered.

Reset Microprocessor
This process is used to reset the microprocessor, after which the microprocessor can either enter halt mode again or
start running again, as follows.
(1) Microprocessor re-runs after reset

Table 3-17 Microprocessor reset and run process
Debug register address R/W Value Description

Dmcontrol(0x10) W-1 0x80000001 Make the debug module work properly.
Dmcontrol(0x10) W-1 0x80000001 Initiate a halt request.
Dmcontrol(0x10) W-1 0x00000001 Clear the halt request bit.
Dmcontrol(0x10) W-1 0x00000003 Initiate a core reset request.

Dmstatus(0x11) R-0 rdata
Get the debug module status information, check
rdata[19:18], if the value is 0b11, it means the processor
has been reset, otherwise the reset failed.

Dmcontrol(0x10) W-1 0x00000001 Clear the reset signal.

Dmcontrol(0x10) W-1 0x10000001
Clear the reset status signal, this bit is valid for write 1
and read constant 0.

Dmstatus(0x11) R-0 rdata

Get the debug module status information, check
rdata[19:18], if the value is 0b00, it means the processor
reset status has been cleared, otherwise the clearing
fails.

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 15

(2) Microprocessor halted immediately after reset

Table 3-18 Continued halt process after microprocessor reset

Debug register address R/W Value Description
Dmcontrol(0x10) W-1 0x80000001 Make the debug module work properly.
Dmcontrol(0x10) W-1 0x80000001 Initiate a halt request.
Dmcontrol(0x10) W-1 0x80000003 Initiate a core reset request and hold the halt request.

Dmstatus(0x11) R-0 rdata
Get the debug module status information, check
rdata[19:18], if the value is 0b11, it means the
processor has been reset, otherwise the reset failed.

Dmcontrol(0x10) W-1 0x80000001 Clear the reset signal and hold the halt request.
Dmcontrol(0x10) W-1 0x90000001 Clear the reset status signal and hold the halt request.

Dmstatus(0x11) R-0 rdata

Get the debug module status information, check
rdata[19:18], if the value is 0b00, it means the
processor reset status has been cleared, otherwise the
clearing fails.

Dmcontrol(0x10) W-1 0x00000001
Clear the halt request when the processor is reset and
haltd again.

Reset Debug module
This process resets only the debug module, as detailed below.

Table 3-19 Debug module reset process
Debug register address R/W Value Description

Dmcontrol(0x10) W-1 0x80000001 Make the debug module work properly.
Dmcontrol(0x10) W-1 0x80000001 Initiate a halt request.
Dmcontrol(0x10) W-1 0x00000001 Clear the halt request.
Dmcontrol(0x10) W-1 0x00000003 Write command.
Dmcontrol(0x10) R-0 rdata Check if rdata is the value written in the previous step.
Dmcontrol(0x10) W-1 0x00000002 Write the debug module reset command.

Dmcontrol(0x10) R-0 rdata
Check whether rdata[1] is 0b0, if it is, the reset is
successful, otherwise the reset fails.

Read/write General-purpose Registers (GPR)
The abstract command supports reading and writing to the general-purpose registers of the microprocessor, and the
detailed process is as follows.
(1) Read GPR, take x6 as an example

Table 3-20 Read GPR process
Debug register address R/W Value Description

Dmcontrol(0x10) W-1 0x80000001 Make the debug module work properly.
Dmcontrol(0x10) W-1 0x80000001 Initiate a halt request.
Dmcontrol(0x10) W-1 0x00000001 Clear the halt request.

Data0(0x04) W-1 0x00000000 Clear the Data0 register.

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 16

Command(0x17) W-1
CMD

(0x00221006)
Set abstract command to copy x6 data to Data0 register.

Abstracts(0x16) R-0 rdata

Check rdata[12], i.e. whether the query busy bit is 0b1,
if yes, it means the abstract command is executing,
otherwise it means no abstract command is executing;
check rdata[10:8], i.e. whether the cmderr value is
0b000, if yes, the abstract command is executing
normally, otherwise the abstract command is executing
incorrectly, check to fix the error according to the error
type.

Data0(0x04) R-0 rdata
Read the Data0 data rdata, which is the x6 register
value.

(2) Write GPR, take x6 as an example

Table 3-21 Writing GPR process
Debug register address R/W Value Description

Dmcontrol(0x10) W-1 0x80000001 Make the debug module work properly.
Dmcontrol(0x10) W-1 0x80000001 Initiate a halt request.
Dmcontrol(0x10) W-1 0x00000001 Clear the halt request.

Data0(0x04) W-1 wdata Write the data to be written, wdata, to Data0.

Command(0x17) W-1
CMD

(0x00231006)
Set abstract command to copy Data0 data to x6 register.

Abstracts(0x16) R-0 rdata

Check rdata[12], i.e. whether the query busy bit is 0b1,
if yes, it means the abstract command is executing,
otherwise it means no abstract command is executing;
check rdata[10:8], i.e. whether the cmderr value is
0b000, if yes, the abstract command is executing
normally, otherwise the abstract command is executing
incorrectly, check to fix the error according to the error
type.

Read/write Control and Status Registers (CSR)
The abstract command also supports reading and writing to the microprocessor's control and status registers, with
the following detailed process.
(1) Read CSR, take mepc for example, its CSR address is 0x341

Table 3-22 Read CSR process
Debug register address R/W Value Description

Dmcontrol(0x10) W-1 0x80000001 Make the debug module work properly.
Dmcontrol(0x10) W-1 0x80000001 Initiate a halt request.
Dmcontrol(0x10) W-1 0x00000001 Clear the halt request.

Data0(0x04) W-1 0x00000000 Clear the Data0 register.

Command(0x17) W-1
CMD

(0x00220341)
Set the abstract command to copy the data in CSR
0x341 to Data0 register.

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 17

Abstracts(0x16) R-0 rdata

Check rdata[12], i.e. whether the query busy bit is 0b1, if
yes, it means the abstract command is executing,
otherwise it means no abstract command is executing;
check rdata[10:8], i.e. whether the cmderr value is 0b000,
if yes, the abstract command is executing normally,
otherwise the abstract command is executing incorrectly,
check to fix the error according to the error type.

Data0(0x04) R-0 rdata
Read the Data0 data rdata, which is the CSR 0x341
register value.

(2) Write CSR, take mepc as an example, its CSR address is 0x341

Table 3-23 Writing CSR process
Debug register address R/W Value Description

Dmcontrol(0x10) W-1 0x80000001 Make the debug module work properly.
Dmcontrol(0x10) W-1 0x80000001 Initiate a halt request.
Dmcontrol(0x10) W-1 0x00000001 Clear the halt request.

Data0(0x04) W-1 wdata Write the data to be written, wdata, to Data0.

Command(0x17) W-1
CMD

(0x00230341)
Set the abstract command to copy Data0 data to CSR
0x341 register.

Abstracts(0x16) R-0 rdata

Check rdata[12], i.e. whether the query busy bit is 0b1, if
yes, it means the abstract command is executing,
otherwise it means no abstract command is executing;
check rdata[10:8], i.e. whether the cmderr value is 0b000,
if yes, the abstract command is executing normally,
otherwise the abstract command is executing incorrectly,
check to fix the error according to the error type.

Read/write Memory
V2 microprocessor debug module abstract command only supports the register access mode, solid for a memory
address to read and write the way to use the abstract command and pre-set progbufx instructions, read and write.
Note that when there are 8 progbufx, which can store a total of 32B bytes of instructions, when less than 32B, the
last instruction is required to be an "ebreak" instruction, and when 32B is stored, the module automatically adds the
"ebreak" instruction at the end. "instruction, when the specific following.
(1) Memory reading
For FLASH, RAM, MCU peripheral registers, etc., all can be read using memory read mode, taking address
0x20000000 as an example.

Table 3-24 Read memory process
Debug register address R/W Value Description

Dmcontrol(0x10) W-1 0x80000001 Make the debug module work properly.
Dmcontrol(0x10) W-1 0x80000001 Initiate a halt request.
Dmcontrol(0x10) W-1 0x00000001 Clear the halt request.

Progbuf0(0x20) W-1 wcode
Write the machine code wcode of the instruction to be
executed to progbuf0, for example, "lw x6,0(x5)" wcode is

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 18

0x0002a303.

Progbuf1(0x21) W-1 0x00100073
If it is less than 32B, add the "ebreak" instruction to
progbuf1.

Data0(0x04) W-1 0x20000000 Write the address to be read to Data0.

Command(0x17) W-1
CMD

(0x00271005)

Set the abstract command to copy the Data0 data to the x5
register and set the abstract command to execute the
instruction in progbufx after execution.

Abstracts(0x16) R-0 rdata

Check rdata[12], i.e. whether the query busy bit is 0b1, if
yes, it means the abstract command is executing, otherwise
it means no abstract command is executing; check
rdata[10:8], i.e. whether the cmderr value is 0b000, if yes,
the abstract command is executing normally, otherwise the
abstract command is executing incorrectly, check to fix the
error according to the error type.

Command(0x17) W-1
CMD

(0x00221006)
Set the abstract command to copy the x6 register value to
Data0.

Abstracts(0x16) R-0 rdata

Check rdata[12], i.e. whether the query busy bit is 0b1, if
yes, it means the abstract command is executing, otherwise
it means no abstract command is executing; check
rdata[10:8], i.e. whether the cmderr value is 0b000, if yes,
the abstract command is executing normally, otherwise the
abstract command is executing incorrectly, check to fix the
error according to the error type.

Data0(0x04) R-0 rdata

Read the Data0 data rdata, which is the 0x20000000
address value. It should be noted that the method operates
the register value, the corresponding register value should
be saved before the operation, and restored after the
operation.

(2) Memory writing
For RAM, MCU peripheral registers, etc. can be written directly according to the following process. For FLASH
writing, it is necessary to program its registers in accordance with the FLASH controller requirements of different
chips by step.

Table 3-25 Write memory process
Debug register address R/W Value Description

Dmcontrol(0x10) W-1 0x80000001 Make the debug module work properly.
Dmcontrol(0x10) W-1 0x80000001 Initiate a halt request.
Dmcontrol(0x10) W-1 0x00000001 Clear the halt request.

Progbuf0(0x20) W-1 wcode
Write the machine code wcode of the instruction to be
executed to progbuf0, e.g. "sw x7,0(x5)" wcode is
0x0072a023.

Progbuf1(0x21) W-1 0x00100073
If it is less than 32B, add the "ebreak" instruction to
progbuf1.

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 19

Data0(0x04) W-1 wdata
Write the address to be written, to Data0, for example
0x20000000.

Command(0x17) W-1
CMD

(0x00231005)
Set abstract command to copy Data0 data to x5 register.

Abstracts(0x16) R-0 rdata

Check rdata[12], i.e. whether the query busy bit is 0b1, if
yes, it means the abstract command is executing,
otherwise it means no abstract command is executing;
check rdata[10:8], i.e. whether the cmderr value is 0b000,
if yes, the abstract command is executing normally,
otherwise the abstract command is executing incorrectly,
check to fix the error according to the error type.

Data0(0x04) W-1 wdata Write the data to be written, wdata, to the Data0 register.

Command(0x17) W-1
CMD

(0x00271007)

Set the abstract command to write Data0 data to the x7
register, and set the program in progbufx to be executed
automatically after the abstract command is executed.

Abstracts(0x16) R-0 rdata

Check rdata[12], i.e. whether the query busy bit is 0b1, if
yes, it means the abstract command is executing,
otherwise it means no abstract command is executing;
check rdata[10:8], i.e. whether the cmderr value is 0b000,
if yes, the abstract command is executing normally,
otherwise the abstract command is executing incorrectly,
check to fix the error according to the error type.

Single-step Execution
By setting the status and control registers under debug, single-step execution in debug mode can be realized and
whether interrupts are enabled under single-step can be controlled, as detailed below.

Table 3-26 Single-step execution process
Debug register address R/W Value Description

Dmcontrol(0x10) W-1 0x80000001 Make the debug module work properly.
Dmcontrol(0x10) W-1 0x80000001 Initiate a halt request.
Dmcontrol(0x10) W-1 0x00000001 Clear the halt request.

Data0(0x04) W-1 0x00008007

Write the DCSR register value to be written to the Data0
register, here set dcsr.breakm=1, dcsr.stepie=0,
dcsr.step=1, dcsr.prv=3 to enable the machine mode to
execute ebreak into debug, single step under the interrupt
is prohibited, set single step execution.

Command(0x17) W-1 0x002307b0 Copy the data in Data0 to DCSR register.

Abstracts(0x16) R-0 rdata

Check rdata[12], i.e. whether the query busy bit is 0b1, if
yes, it means the abstract command is executing,
otherwise it means no abstract command is executing;
check rdata[10:8], i.e. whether the cmderr value is 0b000,
if yes, the abstract command is executing normally,
otherwise the abstract command is executing incorrectly,

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 20

check to fix the error according to the error type.

Dmcontrol(0x10) W-1 0x40000001
Initiate a resume request. The resume request bit is valid
for writing 1, and the hardware clears 0 after recovery.

Dmstatus(0x11) R-0 rdata Get debug module status information.

Data0(0x04) W-1 0x00000003
When the microprocessor enters a halt again, the DCSR
configuration value that turns off single-step debugging
is written to Data0.

Command(0x17) W-1 0x002307b0 Copy the data in Data0 to DCSR register.

Abstracts(0x16) R-0 rdata

Check rdata[12], i.e. whether the query busy bit is 0b1, if
yes, it means the abstract command is executing,
otherwise it means no abstract command is executing;
check rdata[10:8], i.e. whether the cmderr value is 0b000,
if yes, the abstract command is executing normally,
otherwise the abstract command is executing incorrectly,
check to fix the error according to the error type.

Dmcontrol(0x10) W-1 0x40000001
Initiate a resume request. The resume request bit is valid
for writing 1, and the hardware clears 0 after recovery.

Set Software Breakpoints
When debugging the QingKe V2 microprocessor online, you can insert a breakpoint by inserting the "ebreak"
instruction into the program. The reference procedure is as follows.

Table 3-27 Setting software breakpoints process
Debug register address R/W Value Description

Dmcontrol(0x10) W-1 0x80000001 Make the debug module work properly.
Dmcontrol(0x10) W-1 0x80000001 Initiate a halt request.
Dmcontrol(0x10) W-1 0x00000001 Clear the halt request.

Data0(0x04) W-1 0x00008003
Write the software breakpoint DCSR configuration value
to the Data0 register.

Command(0x17) W-1 0x002307b0 Copy the data in Data0 to DCSR register.

Abstracts(0x16) R-0 rdata

Check rdata[12], i.e. whether the query busy bit is 0b1, if
yes, it means the abstract command is executing,
otherwise it means no abstract command is executing;
check rdata[10:8], i.e. whether the cmderr value is 0b000,
if yes, the abstract command is executing normally,
otherwise the abstract command is executing incorrectly,
check to fix the error according to the error type.

Dmcontrol(0x10) W-1 0x40000001
Initiate a resume request, run to insert breakpoint ebreak
and automatically halt to enter debug mode.

Dmstatus(0x11) R-0 rdata
Get debug module status information until execution
reaches a breakpoint and then enters halt again.

Data0(0x04) W-1 0x00000003
When the microprocessor enters a halt again, the DCSR
configuration value that turns off single-step debugging
is written to Data0.

http://wch.cn

QingKeV2 Microprocessor Debug Manual http://wch.cn

V1.0 21

Command(0x17) W-1 0x002307b0 Copy the data in Data0 to DCSR register.

Abstracts(0x16) R-0 rdata

Check rdata[12], i.e. whether the query busy bit is 0b1, if
yes, it means the abstract command is executing,
otherwise it means no abstract command is executing;
check rdata[10:8], i.e. whether the cmderr value is 0b000,
if yes, the abstract command is executing normally,
otherwise the abstract command is executing incorrectly,
check to fix the error according to the error type.

Data0(0x04) W-1 wpc
Write the value of the next program pointer wpc that
needs to be continued after the breakpoint to the Data0
register.

Command(0x17) W-1 0x002307b1 Copy Data0 data to the pointer DPC register.

Abstracts(0x16) R-0 rdata

Check rdata[12], i.e. whether the query busy bit is 0b1, if
yes, it means the abstract command is executing,
otherwise it means no abstract command is executing;
check rdata[10:8], i.e. whether the cmderr value is 0b000,
if yes, the abstract command is executing normally,
otherwise the abstract command is executing incorrectly,
check to fix the error according to the error type.

Dmcontrol(0x10) W-1 0x40000001
A resume request is initiated and the program continues
from the DPC pointer position.

http://wch.cn

	Overview
	Chapter 1 Overview
	Chapter 2 Debug Transport Protocol
	2.1 Packet Format
	2.2 Bit Definition
	2.3 Debug Interface Registers
	Capability Register (CPBR)
	Configuration Register (CFGR)
	Shadow Configuration Register (SHDWCFGR)

	2.4 Configuration Examples

	Chapter 3 Debug Module
	3.1 Debug Module
	Abstract Data 0 (data0)
	Abstract Data 1 (data1)
	Debug Module Control (dmcontrol)
	Debug Module Status (dmstatus)
	Hart Info (hartinfo)
	Abstract Control and Status (abstractcs)
	Abstract Command (command)
	Abstract Command Autoexec (abstractauto)
	Program Buffer X (progbufx)
	Halt Summary 0 (haltsum0)
	Debug Control and Status (dcsr)
	Debug PC (dpc)

	3.2 Operation Examples
	Halt Microprocessor
	Resume Microprocessor
	Reset Microprocessor
	Reset Debug module
	Read/write General-purpose Registers (GPR)
	Read/write Control and Status Registers (CSR)
	Read/write Memory
	Single-step Execution
	Set Software Breakpoints

