Compare commits

..

2 commits

Author SHA1 Message Date
Kizarm
be6759c990 add target stm32f051 2024-03-07 13:46:47 +01:00
Kizarm
db1aff0e6c prepare for new target 2024-03-07 12:23:44 +01:00
25 changed files with 11862 additions and 22 deletions

View file

@ -1,8 +1,8 @@
#include "system.h" #include "system.h"
#include "oneway.h" #include "oneway.h"
#include "adcclass.h" #include "adcdma.h"
static AdcClass * pInstance = nullptr; static AdcDma * pInstance = nullptr;
extern "C" void DMA1_Channel1_IRQHandler( void ) __attribute__((interrupt)); extern "C" void DMA1_Channel1_IRQHandler( void ) __attribute__((interrupt));
void DMA1_Channel1_IRQHandler( void ) { void DMA1_Channel1_IRQHandler( void ) {
@ -90,7 +90,7 @@ static inline void AdcPostInit (void) noexcept {
}); });
} }
//////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////
AdcClass::AdcClass() noexcept : pL (buffer), pH (buffer + HALF_LEN), dst (nullptr) { AdcDma::AdcDma() noexcept : pL (buffer), pH (buffer + HALF_LEN), dst (nullptr) {
pInstance = this; pInstance = this;
EnableClock (); EnableClock ();
Timer2Init (1000u); Timer2Init (1000u);
@ -101,7 +101,7 @@ AdcClass::AdcClass() noexcept : pL (buffer), pH (buffer + HALF_LEN), dst (nullpt
// start timer // start timer
TIM2.CTLR1.B.CEN = SET; TIM2.CTLR1.B.CEN = SET;
} }
inline void AdcClass::send(const bool b) { inline void AdcDma::send(const bool b) {
if (!dst) return; if (!dst) return;
if (b) dst->Send (pH, HALF_LEN); if (b) dst->Send (pH, HALF_LEN);
else dst->Send (pL, HALF_LEN); else dst->Send (pL, HALF_LEN);

10
ch32v003/config.h Normal file
View file

@ -0,0 +1,10 @@
#ifndef CONFIG_H
#define CONFIG_H
#define LED_CFG GPIOD,2
#define REL_CFG GPIOD,4
#define SW__ON false
#define SW_OFF true
#endif // CONFIG_H

80
ch32v003/usart.cpp Normal file
View file

@ -0,0 +1,80 @@
#include "system.h"
#include "usart.h"
static Usart * pInstance = nullptr;
static constexpr unsigned HCLK = 48'000'000u;
extern "C" void USART1_IRQHandler (void) __attribute__((interrupt));
void USART1_IRQHandler (void) {
if (pInstance) pInstance->irq();
};
Usart::Usart(const uint32_t _baud) noexcept : BaseLayer (), tx_ring () {
pInstance = this;
// 1. Clock Enable
RCC.APB2PCENR.modify([](RCC_Type::APB2PCENR_DEF & r) -> auto {
r.B.USART1EN = SET;
r.B.IOPDEN = SET;
return r.R;
});
// 2. GPIO Alternate Config - default TX/PD5, RX/PD6
GPIOD.CFGLR.modify([](GPIOA_Type::CFGLR_DEF & r) -> auto {
r.B.MODE5 = 1u;
r.B.CNF5 = 2u; // or 3u for open drain
r.B.MODE6 = 0u;
r.B.CNF6 = 1u; // floating input
return r.R;
});
// 4. NVIC
NVIC.EnableIRQ (USART1_IRQn);
// 5. USART registry 8.bit bez parity
USART1.CTLR1.modify([] (USART1_Type::CTLR1_DEF & r) -> auto {
r.B.RE = SET;
r.B.TE = SET;
r.B.RXNEIE = SET;
return r.R;
});
USART1.CTLR2.R = 0;
//USART1.CTLR3.B.OVRDIS = SET;
const uint32_t tmp = HCLK / _baud;
USART1.BRR.R = tmp;
USART1.CTLR1.B.UE = SET; // nakonec povolit globálně
}
void Usart::irq () {
volatile USART1_Type::STATR_DEF status (USART1.STATR); // načti status přerušení
char rdata, tdata;
if (status.B.TXE) { // od vysílače
if (tx_ring.Read (tdata)) { // pokud máme data
USART1.DATAR.B.DR = (uint8_t) tdata; // zapíšeme do výstupu
} else { // pokud ne
// Předpoklad je half-duplex i.e. RS485, jinak jen zakázat TXEIE
rdata = (USART1.DATAR.B.DR); // dummy read
USART1.CTLR1.modify([](USART1_Type::CTLR1_DEF & r) -> auto {
r.B.RE = SET; // povol prijem
r.B.TXEIE = RESET; // je nutné zakázat přerušení od vysílače
return r.R;
});
}
}
if (status.B.RXNE) { // od přijímače
rdata = (USART1.DATAR.B.DR); // načteme data
Up (&rdata, 1u); // a pošleme dál
}
}
uint32_t Usart::Down(const char * data, const uint32_t len) {
unsigned n = 0u;
for (n=0u; n<len; n++) {
if (!tx_ring.Write(data[n])) break;
}
USART1.CTLR1.modify([](USART1_Type::CTLR1_DEF & r) -> auto {
r.B.RE = RESET;
r.B.TXEIE = SET; // po povolení přerušení okamžitě přeruší
return r.R;
});
return n;
}
void Usart::SetRS485 (const bool polarity) const {
}
void Usart::SetHalfDuplex (const bool on) const {
}

View file

@ -1,21 +1,21 @@
#ifndef ADCCLASS_H #ifndef ADCDMA_H
#define ADCCLASS_H #define ADCDMA_H
#include <stdint.h> #include <stdint.h>
class OneWay; class OneWay;
static constexpr unsigned HALF_LEN = 120u; static constexpr unsigned HALF_LEN = 120u;
static constexpr unsigned FULL_LEN = HALF_LEN * 2u; static constexpr unsigned FULL_LEN = HALF_LEN * 2u;
class AdcClass { class AdcDma {
uint16_t * pL; uint16_t * pL;
uint16_t * pH; uint16_t * pH;
uint16_t buffer [FULL_LEN]; uint16_t buffer [FULL_LEN];
OneWay * dst; OneWay * dst;
public: public:
explicit AdcClass () noexcept; explicit AdcDma () noexcept;
void attach (OneWay & d) { dst = & d; } void attach (OneWay & d) { dst = & d; }
void send (const bool b); void send (const bool b);
}; };
#endif // ADCCLASS_H #endif // ADCDMA_H

21
common/usart.h Normal file
View file

@ -0,0 +1,21 @@
#ifndef USART_H
#define USART_H
#include "fifo.h"
#include "baselayer.h"
/** @class Usart
* @brief Sériový port.
*
* Zde RS485, jen výstup.
*/
class Usart : public BaseLayer {
FIFO<char, 64> tx_ring;
public:
explicit Usart (const uint32_t baud = 9600) noexcept;
uint32_t Down (const char * data, const uint32_t len) override;
void SetRS485 (const bool polarity) const;
void irq (void);
void SetHalfDuplex (const bool on) const;
};
#endif // USART_H

View file

@ -1,6 +1,9 @@
# ch32v003 # ch32v003 | stm32f051
TARGET?= ch32v003 TARGET?= ch32v003
#TARGET?= stm32f051
TOOL ?= gcc TOOL ?= gcc
# do not use for ch32v003
#TOOL ?= clang
PRJ = example PRJ = example
@ -16,8 +19,8 @@ CFLAGS+= -I. -I./common -I./$(TARGET) -I/usr/include/newlib -DUSE_HSE=1
DEL = rm -f DEL = rm -f
# zdrojaky # zdrojaky
OBJS = main.o adcclass.o hdo.o OBJS = main.o adcdma.o hdo.o
OBJS += usartclass.o print.o OBJS += usart.o print.o
include $(TARGET)/$(TOOL).mk include $(TARGET)/$(TOOL).mk
BOBJS = $(addprefix $(BLD),$(OBJS)) BOBJS = $(addprefix $(BLD),$(OBJS))
@ -44,9 +47,9 @@ $(BLD)%.o: %.cpp
@$(CXX) -std=c++17 -fno-rtti -c $(CFLAGS) $< -o $@ @$(CXX) -std=c++17 -fno-rtti -c $(CFLAGS) $< -o $@
$(BLD): $(BLD):
mkdir $(BLD) mkdir $(BLD)
flash: $(PRJ).elf flash: $(BLD) $(PRJ).elf
minichlink -w $(PRJ).bin flash -b minichlink -w $(PRJ).bin flash -b
# vycisti # vycisti
clean: clean:
$(DEL) $(BLD)* *.lst *.bin *.elf *.map sin.c *~ $(DEL) $(BLD)* *.lst *.bin *.elf *.map sin.c *~
.PHONY: all clean .PHONY: all clean flash

View file

@ -37,8 +37,8 @@ void Hdo::pass () {
cout << value << " \r"; cout << value << " \r";
value -= trigger; value -= trigger;
if (value > 0) led << false; // LED je zapojená proti VCC if (value > 0) led << SW__ON; // LED je zapojená proti VCC
else led << true; else led << SW_OFF;
// Konečné vyhodnocení. // Konečné vyhodnocení.
if (Decode (value, buf1)) { // Telegram OK. if (Decode (value, buf1)) { // Telegram OK.
HumanRead (buf1, buf2); // Převeď ho do čitelné podoby HumanRead (buf1, buf2); // Převeď ho do čitelné podoby

View file

@ -1,9 +1,10 @@
#ifndef HDO_H #ifndef HDO_H
#define HDO_H #define HDO_H
#include "gpio.h" #include "gpio.h"
#include "usartclass.h" #include "usart.h"
#include "print.h" #include "print.h"
#include "oneway.h" #include "oneway.h"
#include "config.h"
static constexpr int ISHIFT = 12; static constexpr int ISHIFT = 12;
/* Tady je ten výpočet proveden externě. /* Tady je ten výpočet proveden externě.
@ -28,7 +29,7 @@ static constexpr int TBUFLEN = 64;
class Hdo : public OneWay { class Hdo : public OneWay {
GpioClass led, relay; GpioClass led, relay;
UsartClass serial; Usart serial;
Print cout; Print cout;
FIFO<int, 8> data; FIFO<int, 8> data;
const int coeff; const int coeff;
@ -44,7 +45,7 @@ class Hdo : public OneWay {
public: public:
explicit Hdo (const char * command) noexcept : OneWay (), explicit Hdo (const char * command) noexcept : OneWay (),
led (GPIOD, 2), relay (GPIOD, 4), serial (115200u), cout (DEC), data(), coeff (1706), trigger (0x4000), led (LED_CFG), relay (REL_CFG), serial (115200u), cout (DEC), data(), coeff (1706), trigger (0x4000),
cmd (command), suma (0), bits (0), counter (0), status (WAIT_FOR_BEGIN) { cmd (command), suma (0), bits (0), counter (0), status (WAIT_FOR_BEGIN) {
/* trigger musí být nastaven tak do 1/3 až do 1/2 maximální vyhodnocené hodnoty (viz výpis) /* trigger musí být nastaven tak do 1/3 až do 1/2 maximální vyhodnocené hodnoty (viz výpis)
* Je nutné použít HSE, tj. krystal 24 HHz. Bez toho to fakt nechodí a to i na procesorech i.e. STM. * Je nutné použít HSE, tj. krystal 24 HHz. Bez toho to fakt nechodí a to i na procesorech i.e. STM.

View file

@ -1,4 +1,4 @@
#include "adcclass.h" #include "adcdma.h"
#include "hdo.h" #include "hdo.h"
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
/* Tohle je trochu komplexnější příklad. /* Tohle je trochu komplexnější příklad.
@ -27,7 +27,7 @@
* !!! Krystal 24 MHz nutný !!! * !!! Krystal 24 MHz nutný !!!
* */ * */
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
static AdcClass adc; static AdcDma adc;
static Hdo hdo ("A1B8DP1"); static Hdo hdo ("A1B8DP1");
int main () { int main () {
adc.attach(hdo); adc.attach(hdo);

1
hdo/stm32f051 Symbolic link
View file

@ -0,0 +1 @@
../stm32f051/

139
stm32f051/CortexM0.h Normal file
View file

@ -0,0 +1,139 @@
#ifndef ARMCM0_HDEF
#define ARMCM0_HDEF
/** @brief SYSTICK for Cortex-M0
* Není to moc domyšlené, před tt. hlavičkou je nutné mít definován NVIC a IRQn,
* což je v STM generované hlavičce většinou uděláno. NVIC_EnableIRQ je zjednodušen
* jen pro CM0, jinak se tam čaruje s PRIO_BITS, tady to není potřeba.
*/
// tohle je jediné, co je potřeba z core_cm0.h
static inline void NVIC_EnableIRQ (IRQn irq) {
NVIC.ISER.R = ((1 << (static_cast<uint32_t>(irq) & 0x1F)));
}
static constexpr uint32_t SysTick_LOAD_RELOAD_Msk = (0xFFFFFFUL); /*!< SysTick LOAD: RELOAD Mask */
// ////////////////////+++ SysTick +-+//////////////////// //
struct SysTick_DEF { /*!< 24Bit System Tick Timer for use in RTOS */
union CSR_DEF { //!< [0000](04)[0x00000004] SysTick Control and Status Register
enum ENABLE_ENUM /*: uint32_t */ {
ENABLE_0 = 0, //!< disabled
ENABLE_1 = 1, //!< enabled
};
enum TICKINT_ENUM /*: uint32_t */ {
TICKINT_0 = 0, //!< Enable SysTick Exception
TICKINT_1 = 1, //!< Disable SysTick Exception
};
enum CLKSOURCE_ENUM /*: uint32_t */ {
CLKSOURCE_0 = 0, //!< External Clock
CLKSOURCE_1 = 1, //!< CPU Clock
};
struct {
__IO ENABLE_ENUM ENABLE : 1; //!<[00] Enable SysTick Timer
__IO TICKINT_ENUM TICKINT : 1; //!<[01] Generate Tick Interrupt
__IO CLKSOURCE_ENUM CLKSOURCE : 1; //!<[02] Source to count from
uint32_t UNUSED0 : 13; //!<[03]
__IO ONE_BIT COUNTFLAG : 1; //!<[16] SysTick counted to zero
} B;
__IO uint32_t R;
explicit CSR_DEF () noexcept { R = 0x00000004u; }
template<typename F> void setbit (F f) volatile {
CSR_DEF r;
R = f (r);
}
template<typename F> void modify (F f) volatile {
CSR_DEF r; r.R = R;
R = f (r);
}
};
__IO CSR_DEF CSR ; //!< register definition
union RVR_DEF { //!< [0004](04)[0x00000000] SysTick Reload Value Register
struct {
__IO uint32_t RELOAD : 24; //!<[00] Value to auto reload SysTick after reaching zero
} B;
__IO uint32_t R;
explicit RVR_DEF () noexcept { R = 0x00000000u; }
template<typename F> void setbit (F f) volatile {
RVR_DEF r;
R = f (r);
}
template<typename F> void modify (F f) volatile {
RVR_DEF r; r.R = R;
R = f (r);
}
};
__IO RVR_DEF RVR ; //!< register definition
union CVR_DEF { //!< [0008](04)[0x00000000] SysTick Current Value Register
struct {
__IO uint32_t CURRENT : 24; //!<[00] Current value
} B;
__IO uint32_t R;
explicit CVR_DEF () noexcept { R = 0x00000000u; }
template<typename F> void setbit (F f) volatile {
CVR_DEF r;
R = f (r);
}
template<typename F> void modify (F f) volatile {
CVR_DEF r; r.R = R;
R = f (r);
}
};
__IO CVR_DEF CVR ; //!< register definition
union CALIB_DEF { //!< [000c](04)[0x00000000] SysTick Calibration Value Register
enum SKEW_ENUM /*: uint32_t */ {
SKEW_0 = 0, //!< 10ms calibration value is exact
SKEW_1 = 1, //!< 10ms calibration value is inexact, because of the clock frequency
};
enum NOREF_ENUM /*: uint32_t */ {
NOREF_0 = 0, //!< Ref Clk available
NOREF_1 = 1, //!< Ref Clk not available
};
struct {
__I uint32_t TENMS : 24; //!<[00] Reload value to use for 10ms timing
uint32_t UNUSED0 : 6; //!<[24]
__I SKEW_ENUM SKEW : 1; //!<[30] Clock Skew
__I NOREF_ENUM NOREF : 1; //!<[31] No Ref
} B;
__IO uint32_t R;
explicit CALIB_DEF () noexcept { R = 0x00000000u; }
template<typename F> void setbit (F f) volatile {
CALIB_DEF r;
R = f (r);
}
template<typename F> void modify (F f) volatile {
CALIB_DEF r; r.R = R;
R = f (r);
}
};
__IO CALIB_DEF CALIB ; //!< register definition
// methods :
bool Config (const uint32_t ticks) {
if (ticks > SysTick_LOAD_RELOAD_Msk) return false; // Reload value impossible
RVR.B.RELOAD = ticks - 1u; // set reload register
NVIC_EnableIRQ (SysTick_IRQn); // Enable Interrupt
CVR.B.CURRENT = 0; // Load the SysTick Counter Value
CSR.modify([](CSR_DEF & r) -> auto { // Enable SysTick IRQ and SysTick Timer
r.B.CLKSOURCE = CSR_DEF::CLKSOURCE_ENUM::CLKSOURCE_1;
r.B.TICKINT = CSR_DEF::TICKINT_ENUM ::TICKINT_1;
r.B.ENABLE = CSR_DEF::ENABLE_ENUM ::ENABLE_1;
return r.R;
});
return true; // Function successful
}
}; /* total size = 0x0010, struct size = 0x0010 */
static SysTick_DEF & SysTick = * reinterpret_cast<SysTick_DEF *> (0xe000e010);
static_assert (sizeof(struct SysTick_DEF) == 16, "size error SysTick");
#endif

10621
stm32f051/STM32F0x1.h Normal file

File diff suppressed because it is too large Load diff

119
stm32f051/adcdma.cpp Normal file
View file

@ -0,0 +1,119 @@
#include "STM32F0x1.h"
#include "CortexM0.h"
#include "gpio.h"
#include "adcdma.h"
#include "oneway.h"
static constexpr uint32_t AdcChanel = 2u;
static constexpr uint32_t AdcPin = 2u;
static inline void EnableClock (void) {
RCC.APB2ENR.B.ADCEN = SET;
RCC.AHBENR.B.DMA1EN = SET;
RCC.APB1ENR.B.TIM3EN = SET;
}
static inline void Timer3Init (uint32_t us) {
TIM3.PSC.R = 47u;
TIM3.ARR.R = us - 1u;
// Preload, enable
TIM3.CR1.B.ARPE = SET;
// TRGO update for ADC
TIM3.CR2.B.MMS = 2;
}
typedef __SIZE_TYPE__ size_t;
static inline void Dma1Ch1Init (void * ptr) {
// Enable DMA transfer on ADC and circular mode
ADC.CFGR1.B.DMAEN = SET;
ADC.CFGR1.B.DMACFG = SET;
// Configure the peripheral data register address
DMA1.CPAR1.R = reinterpret_cast<size_t> (&(ADC.DR));
// Configure the memory address
DMA1.CMAR1.R = reinterpret_cast<size_t> (ptr);
// Configure the number of DMA tranfer to be performs on DMA channel 1
DMA1.CNDTR1.R = FULL_LEN;
// Configure increment, size, interrupts and circular mode
DMA1.CCR1.modify([] (auto & r) -> auto {
r.B.MINC = SET;
r.B.MSIZE = 1u;
r.B.PSIZE = 1u;
r.B.HTIE = SET;
r.B.TCIE = SET;
r.B.CIRC = SET;
return r.R;
});
// Enable DMA Channel 1
DMA1.CCR1.B.EN = SET;
}
static inline void AdcCalibrate (void) {
// Ensure that ADEN = 0
// Clear ADEN
if (ADC.CR.B.ADEN != RESET) {
ADC.CR.B.ADEN = RESET;
}
// Launch the calibration by setting ADCAL
ADC.CR.B.ADCAL = SET;
// Wait until ADCAL=0
while (ADC.CR.B.ADCAL != RESET);
//__NOP();
//__NOP(); // This 2 NOPs are to ensure 2 ADC Cycles before setting ADEN bit
}
static inline void AdcInit (void) {
// PCLK / 2 - jitter
ADC.CFGR2.B.JITOFF_D2 = SET;
// Select TRG TIM3
ADC.CFGR1.modify([] (auto & r) -> auto {
r.B.EXTEN = 1u;
r.B.EXTSEL = 3u;
return r.R;
});
// Select CHSELx
ADC.CHSELR.R = (1 << AdcChanel);
// Select a sampling mode of 000
ADC.SMPR.R = 1u;
}
static inline void AdcStart (void) {
ADC.CR.B.ADEN = SET;
TIM3.CR1.B.CEN = SET;
ADC.CR.B.ADSTART = SET;
}
static AdcDma * Instance = nullptr;
AdcDma::AdcDma() noexcept : pL (buffer), pH (buffer + HALF_LEN), dst (nullptr) {
Instance = this;
EnableClock ();
AdcCalibrate();
GpioClass in (GpioPortA, AdcPin, GPIO_Mode_AN);
Timer3Init (1000);
NVIC_EnableIRQ (DMA1_CH1_IRQn);
Dma1Ch1Init (buffer);
AdcInit ();
AdcStart ();
}
/*
void AdcDma::dmaIrq (void) {
volatile DMA_ISR_s status (DMA1.ISR);
current = nullptr;
if (status.B.HTIF1) current = ptr_l;
if (status.B.TCIF1) current = ptr_h;
// znuluj příznaky
DMA1.IFCR.R = status.R;
if (!current) return;
// zpracuj data, pokud je potřeba
send (current, PERIOD);
~led;
}
*/
extern "C" void DMA1_Channel1_IRQHandler (void) {
volatile DMA1_Type::ISR_DEF status (DMA1.ISR);
// znuluj příznaky
DMA1.IFCR.R = status.R;
if (!Instance) return;
if (status.B.HTIF1 != RESET) Instance->send (false);
else if (status.B.TCIF1 != RESET) Instance->send (true);
}
inline void AdcDma::send(const bool b) {
if (!dst) return;
if (b) dst->Send (pH, HALF_LEN);
else dst->Send (pL, HALF_LEN);
}

30
stm32f051/clang.mk Normal file
View file

@ -0,0 +1,30 @@
# Use clang / llvm toolchain
CC = clang
CXX = clang++
# linker je vlastně ld.lld
LD = clang++
# Zde kvůli jednoduchosti použijeme arm-none-eabi-g++ jako linker.
# Clang nemá některé ABI funkce, toolchain je v zásadě kompatibilní,
# takže než to hledat někde po webu, raději použijeme rovnou libc.
# Bez složité matematiky jde použít ld.lld nebo přidat libaeabi-cortexm0.a
# LD = arm-none-eabi-g++
SIZE = llvm-size
DUMP = llvm-objdump
COPY = llvm-objcopy
CCPU = -mcpu=cortex-m0
MCPU = -mthumb $(CCPU)
TRIP = thumbv6-none-eabi
CFLAGS+= -Oz -flto
#CFLAGS+= -Wno-deprecated-volatile
CFLAGS+= --target=$(TRIP) $(MCPU)
LFLAGS+= --target=$(TRIP)
#LFLAGS+= $(MCPU)
#LFLAGS+= -nostartfiles
LFLAGS+= -nostdlib -lto-O3
LFLAGS+= -Wl,--Map=$(@:%.elf=%.map),--gc-sections
LDLIBS+= -L./stm32f051 -T script.ld
LDLIBS+= -L/usr/lib/gcc/arm-none-eabi/9.2.1/thumb/v6-m/nofp -lgcc
DFLAGS+= --triple=$(TRIP) $(CCPU)
OBJS += startup.o system.o gpio.o

10
stm32f051/config.h Normal file
View file

@ -0,0 +1,10 @@
#ifndef CONFIG_H
#define CONFIG_H
#define LED_CFG GpioPortA,0
#define REL_CFG GpioPortA,1
#define SW__ON true
#define SW_OFF false
#endif // CONFIG_H

21
stm32f051/gcc.mk Normal file
View file

@ -0,0 +1,21 @@
# Use gcc / binutils toolchain
PREFIX = arm-none-eabi-
CC = $(PREFIX)gcc
CXX = $(PREFIX)g++
# linker je ld
LD = $(PREFIX)g++
SIZE = $(PREFIX)size
DUMP = $(PREFIX)objdump
COPY = $(PREFIX)objcopy
CFLAGS+= -Os -flto
CCPU = -mcpu=cortex-m0
MCPU = -mthumb $(CCPU)
CFLAGS+= $(MCPU)
LFLAGS+= $(MCPU)
LFLAGS+= -Wl,--Map=$(@:%.elf=%.map),--gc-sections
LFLAGS+= -nostartfiles -flto -O3
LDLIBS+= -L./stm32f051 -T script.ld
OBJS += startup.o system.o gpio.o

26
stm32f051/gpio.cpp Normal file
View file

@ -0,0 +1,26 @@
#include "gpio.h"
static constexpr uint32_t RCC_AHBENR_GPIOAEN = 1u << 17; /*!< GPIOA clock enable */
static constexpr uint32_t RCC_AHBENR_GPIOBEN = 1u << 18; /*!< GPIOB clock enable */
static constexpr uint32_t RCC_AHBENR_GPIOCEN = 1u << 19; /*!< GPIOC clock enable */
static constexpr uint32_t RCC_AHBENR_GPIODEN = 1u << 20; /*!< GPIOD clock enable */
static constexpr uint32_t RCC_AHBENR_GPIOFEN = 1u << 22; /*!< GPIOF clock enable */
static const GpioAssocPort cPortTab[] = {
{&GPIOA, RCC_AHBENR_GPIOAEN},
{&GPIOB, RCC_AHBENR_GPIOBEN},
{&GPIOC, RCC_AHBENR_GPIOCEN},
{&GPIOD, RCC_AHBENR_GPIODEN},
{&GPIOF, RCC_AHBENR_GPIOFEN},
};
GpioClass::GpioClass (GpioPortNum const port, const uint32_t no, const GPIOMode_TypeDef type) noexcept :
io(cPortTab[port].portAdr), pos(1UL << no), num(no) {
// Povol hodiny
RCC.AHBENR.R |= cPortTab[port].clkMask;
// A nastav pin (pořadí dle ST knihovny).
setSpeed (GPIO_Speed_Level_3);
setOType (GPIO_OType_PP);
setMode (type);
setPuPd (GPIO_PuPd_NOPULL);
}

142
stm32f051/gpio.h Normal file
View file

@ -0,0 +1,142 @@
#ifndef GPIO_H
#define GPIO_H
#include "STM32F0x1.h"
/**
* @brief General Purpose IO
*/
typedef enum {
GPIO_Mode_IN = 0x00, /*!< GPIO Input Mode */
GPIO_Mode_OUT = 0x01, /*!< GPIO Output Mode */
GPIO_Mode_AF = 0x02, /*!< GPIO Alternate function Mode */
GPIO_Mode_AN = 0x03 /*!< GPIO Analog In/Out Mode */
} GPIOMode_TypeDef;
typedef enum {
GPIO_OType_PP = 0x00,
GPIO_OType_OD = 0x01
} GPIOOType_TypeDef;
typedef enum {
GPIO_Speed_Level_1 = 0x01, /*!< Medium Speed */
GPIO_Speed_Level_2 = 0x02, /*!< Fast Speed */
GPIO_Speed_Level_3 = 0x03 /*!< High Speed */
} GPIOSpeed_TypeDef;
typedef enum {
GPIO_PuPd_NOPULL = 0x00,
GPIO_PuPd_UP = 0x01,
GPIO_PuPd_DOWN = 0x02
} GPIOPuPd_TypeDef;
/// Enum pro PortNumber
typedef enum {
GpioPortA,
GpioPortB,
GpioPortC,
GpioPortD,
GpioPortF
} GpioPortNum;
/// Asociace port Adress a RCC clock
struct GpioAssocPort {
GPIOF_Type * const portAdr;
const uint32_t clkMask;
};
/** @file
* @brief Obecný GPIO pin.
*
* @class GpioClass
* @brief Obecný GPIO pin.
*
* Ukázka přetížení operátorů. Návratové hodnoty jsou v tomto případě celkem zbytečné,
* ale umožňují řetězení, takže je možné napsat např.
@code
+-+-+-led;
@endcode
* a máme na led 3 pulsy. Je to sice blbost, ale funguje.
* Všechny metody jsou konstantní, protože nemění data uvnitř třídy.
* Vlastně ani nemohou, protože data jsou konstantní.
*/
class GpioClass {
public:
/** Konstruktor
@param port GpioPortA | GpioPortB | GpioPortC | GpioPortD | GpioPortF
@param no číslo pinu na portu
@param type IN, OUT, AF, AN default OUT
*/
explicit GpioClass (GpioPortNum const port, const uint32_t no, const GPIOMode_TypeDef type = GPIO_Mode_OUT) noexcept;
/// Nastav pin @param b na tuto hodnotu
const GpioClass& operator<< (const bool b) const {
if (b) io->BSRR.R = pos;
else io->BRR.R = pos;
return *this;
}
//![Gpio example]
/// Nastav pin na log. H
const GpioClass& operator+ (void) const {
io->BSRR.R = (uint32_t) pos;
return *this;
}
/// Nastav pin na log. L
const GpioClass& operator- (void) const {
io->BRR.R = pos;
return *this;
}
/// Změň hodnotu pinu
const GpioClass& operator~ (void) const {
io->ODR.R ^= pos;
return *this;
};
/// Načti logickou hodnotu na pinu
const bool get (void) const {
if (io->IDR.R & pos) return true;
else return false;
};
/// A to samé jako operátor
const GpioClass& operator>> (bool& b) const {
b = get();
return *this;
}
//![Gpio example]
void setMode (GPIOMode_TypeDef p) {
uint32_t dno = num * 2;
io->MODER.R &= ~(3UL << dno);
io->MODER.R |= (p << dno);
}
void setOType (GPIOOType_TypeDef p) {
io->OTYPER.R &= (uint16_t)~(1UL << num);
io->OTYPER.R |= (uint16_t) (p << num);
}
void setSpeed (GPIOSpeed_TypeDef p) {
uint32_t dno = num * 2;
io->OSPEEDR.R &= ~(3UL << dno);
io->OSPEEDR.R |= (p << dno);
}
void setPuPd (GPIOPuPd_TypeDef p) {
uint32_t dno = num * 2;
io->PUPDR.R &= ~(3UL << dno);
io->PUPDR.R |= (p << dno);
}
void setAF (unsigned af) {
unsigned int pd,pn = num;
pd = (pn & 7) << 2; pn >>= 3;
if (pn) {
io->AFRH.R &= ~(0xFU << pd);
io->AFRH.R |= ( af << pd);
} else {
io->AFRL.R &= ~(0xFU << pd);
io->AFRL.R |= ( af << pd);
}
}
private:
/// Port.
GPIOF_Type * const io;
/// A pozice pinu na něm, stačí 16.bit
const uint16_t pos;
/// pro funkce setXXX necháme i číslo pinu
const uint16_t num;
};
#endif // GPIO_H

94
stm32f051/script.ld Normal file
View file

@ -0,0 +1,94 @@
/*
*/
/* Entry Point */
ENTRY(Vectors)
/* Generate a link error if heap and stack don't fit into RAM */
_Min_Heap_Size = 0; /* required amount of heap */
_Min_Stack_Size = 0; /* required amount of stack */
/* Specify the memory areas */
MEMORY {
FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 64K
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 8K
}
/* Highest address of the user mode stack */
_estack = ORIGIN(RAM) + LENGTH(RAM);
/* Define output sections */
SECTIONS {
/* The startup code goes first into FLASH */
/* The program code and other data goes into FLASH */
.text :
{
. = ALIGN(4);
KEEP(*(.isr_vector)) /* Startup code */
. = ALIGN(4);
*(.text) /* .text sections (code) */
*(.text*) /* .text* sections (code) */
*(.rodata) /* .rodata sections (constants, strings, etc.) */
*(.rodata*) /* .rodata* sections (constants, strings, etc.) */
*(.glue_7) /* glue arm to thumb code */
*(.glue_7t) /* glue thumb to arm code */
*(.eh_frame)
*(.init)
*(.fini)
/* Pro použití statických konstruktorů v C++, KEEP musí být použit při gc */
. = ALIGN(4);
PROVIDE_HIDDEN (__init_array_start = .);
KEEP (*(.ctors)) /* for clang */
KEEP (*(.init_array*))
PROVIDE_HIDDEN (__init_array_end = .);
. = ALIGN(4);
_etext = .; /* define a global symbols at end of code */
} >FLASH
/* used by the startup to initialize data */
_sidata = .;
/* Initialized data sections goes into RAM, load LMA copy after code */
.data : AT ( _sidata )
{
. = ALIGN(4);
_sdata = .; /* create a global symbol at data start */
*(.data) /* .data sections */
*(.data*) /* .data* sections */
. = ALIGN(4);
_edata = .; /* define a global symbol at data end */
} >RAM
/* Uninitialized data section */
. = ALIGN(4);
.bss :
{
/* This is used by the startup in order to initialize the .bss secion */
_sbss = .; /* define a global symbol at bss start */
__bss_start__ = _sbss;
*(.bss)
*(.bss*)
*(COMMON)
_ebss = .;
__bss_end__ = _ebss;
} >RAM
_end = .;
/* Remove information from the standard libraries */
/DISCARD/ :
{
/*
libc.a ( * )
libm.a ( * )
libgcc.a ( * )
*(.debug*)
*/
*(.comment*)
*(.ARM.*)
}
.ARM.attributes 0 : { *(.ARM.attributes) }
}

163
stm32f051/startup.c Normal file
View file

@ -0,0 +1,163 @@
#include <stdint.h>
#if defined (__cplusplus)
extern "C" {
#endif
//! [InitStaticConstructors]
extern void (*__init_array_start)(); // definováno v linker skriptu
extern void (*__init_array_end) (); // definováno v linker skriptu
void static_init() {
void (**p)();
for (p = &__init_array_start; p < &__init_array_end; p++) (*p)();
}
//! [InitStaticConstructors]
#define WEAK __attribute__ ((weak))
#define ALIAS(f) __attribute__ ((weak, alias (#f)))
extern unsigned int _estack;
extern unsigned int _sidata;
extern unsigned int _sdata;
extern unsigned int _edata;
extern unsigned int _sbss;
extern unsigned int _ebss;
WEAK void Reset_Handler (void);
WEAK void DefaultHandler (void);
void NonMaskableInt_Handler (void) ALIAS(Default_Handler);
void HardFault_Handler (void) ALIAS(Default_Handler);
void MemoryManagement_Handler (void) ALIAS(Default_Handler);
void BusFault_Handler (void) ALIAS(Default_Handler);
void UsageFault_Handler (void) ALIAS(Default_Handler);
void SVCall_Handler (void) ALIAS(Default_Handler);
void DebugMonitor_Handler (void) ALIAS(Default_Handler);
void PendSV_Handler (void) ALIAS(Default_Handler);
void SysTick_Handler (void) ALIAS(Default_Handler);
void WWDG_IRQHandler (void) ALIAS(Default_Handler);
void PVD_IRQHandler (void) ALIAS(Default_Handler);
void RTC_IRQHandler (void) ALIAS(Default_Handler);
void FLASH_IRQHandler (void) ALIAS(Default_Handler);
void RCC_CRS_IRQHandler (void) ALIAS(Default_Handler);
void EXTI0_1_IRQHandler (void) ALIAS(Default_Handler);
void EXTI2_3_IRQHandler (void) ALIAS(Default_Handler);
void EXTI4_15_IRQHandler (void) ALIAS(Default_Handler);
void TSC_IRQHandler (void) ALIAS(Default_Handler);
void DMA1_CH1_IRQHandler (void) ALIAS(Default_Handler);
void DMA1_CH2_3_DMA2_CH1_2_IRQHandler (void) ALIAS(Default_Handler);
void DMA1_CH4_5_6_7_DMA2_CH3_4_5_IRQHandler (void) ALIAS(Default_Handler);
void ADC_COMP_IRQHandler (void) ALIAS(Default_Handler);
void TIM1_BRK_UP_TRG_COM_IRQHandler (void) ALIAS(Default_Handler);
void TIM1_CC_IRQHandler (void) ALIAS(Default_Handler);
void TIM2_IRQHandler (void) ALIAS(Default_Handler);
void TIM3_IRQHandler (void) ALIAS(Default_Handler);
void TIM6_DAC_IRQHandler (void) ALIAS(Default_Handler);
void TIM7_IRQHandler (void) ALIAS(Default_Handler);
void TIM14_IRQHandler (void) ALIAS(Default_Handler);
void TIM15_IRQHandler (void) ALIAS(Default_Handler);
void TIM16_IRQHandler (void) ALIAS(Default_Handler);
void TIM17_IRQHandler (void) ALIAS(Default_Handler);
void I2C1_IRQHandler (void) ALIAS(Default_Handler);
void I2C2_IRQHandler (void) ALIAS(Default_Handler);
void SPI1_IRQHandler (void) ALIAS(Default_Handler);
void SPI2_IRQHandler (void) ALIAS(Default_Handler);
void USART1_IRQHandler (void) ALIAS(Default_Handler);
void USART2_IRQHandler (void) ALIAS(Default_Handler);
void USART3_4_5_6_7_8_IRQHandler (void) ALIAS(Default_Handler);
void CEC_CAN_IRQHandler (void) ALIAS(Default_Handler);
void USB_IRQHandler (void) ALIAS(Default_Handler);
extern int main (void);
extern void SystemInit (void);
extern void SystemCoreClockUpdate (void);
#if defined (__cplusplus)
}; // extern "C"
#endif
typedef void (*handler) (void);
__attribute__ ((section(".isr_vector")))
handler Vectors[] = {
(handler) &_estack,
Reset_Handler,
NonMaskableInt_Handler,
HardFault_Handler,
MemoryManagement_Handler,
BusFault_Handler,
UsageFault_Handler,
0,
0,
0,
0,
SVCall_Handler,
DebugMonitor_Handler,
0,
PendSV_Handler,
SysTick_Handler,
WWDG_IRQHandler,
PVD_IRQHandler,
RTC_IRQHandler,
FLASH_IRQHandler,
RCC_CRS_IRQHandler,
EXTI0_1_IRQHandler,
EXTI2_3_IRQHandler,
EXTI4_15_IRQHandler,
TSC_IRQHandler,
DMA1_CH1_IRQHandler,
DMA1_CH2_3_DMA2_CH1_2_IRQHandler,
DMA1_CH4_5_6_7_DMA2_CH3_4_5_IRQHandler,
ADC_COMP_IRQHandler,
TIM1_BRK_UP_TRG_COM_IRQHandler,
TIM1_CC_IRQHandler,
TIM2_IRQHandler,
TIM3_IRQHandler,
TIM6_DAC_IRQHandler,
TIM7_IRQHandler,
TIM14_IRQHandler,
TIM15_IRQHandler,
TIM16_IRQHandler,
TIM17_IRQHandler,
I2C1_IRQHandler,
I2C2_IRQHandler,
SPI1_IRQHandler,
SPI2_IRQHandler,
USART1_IRQHandler,
USART2_IRQHandler,
USART3_4_5_6_7_8_IRQHandler,
CEC_CAN_IRQHandler,
USB_IRQHandler,
};
static inline void fillStack (void) {
register unsigned int *dst, *end;
dst = &_ebss;
end = &_estack;
while (dst < end) *dst++ = 0xDEADBEEFU;
}
void Reset_Handler(void) {
fillStack();
register unsigned int *src, *dst, *end;
/* Zero fill the bss section */
dst = &_sbss;
end = &_ebss;
while (dst < end) *dst++ = 0U;
/* Copy data section from flash to RAM */
src = &_sidata;
dst = &_sdata;
end = &_edata;
while (dst < end) *dst++ = *src++;
SystemInit();
SystemCoreClockUpdate(); // Potřebné pro USART
static_init(); // Zde zavolám globální konstruktory
main();
for (;;);
}
void Default_Handler (void) {
asm volatile ("bkpt 1");
}

232
stm32f051/system.cpp Normal file
View file

@ -0,0 +1,232 @@
#include "STM32F0x1.h"
#include "system.h"
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)8000000) /*!< Value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE ((uint32_t)8000000) /*!< Value of the Internal High Speed oscillator in Hz. */
#endif /* HSI_VALUE */
#define HSE_STARTUP_TIMEOUT ((uint16_t)0x5000) /*!< Time out for HSE start up */
//! [EnumExampleSW_EN_Def]
typedef enum {
USEHSI = 0, USEHSE, USEPLL
} SW_EN;
//! [EnumExampleSW_EN_Def]
typedef enum {
RCC_CFGR_PLLMUL2 = 0,
RCC_CFGR_PLLMUL3,
RCC_CFGR_PLLMUL4,
RCC_CFGR_PLLMUL5,
RCC_CFGR_PLLMUL6,
RCC_CFGR_PLLMUL7,
RCC_CFGR_PLLMUL8,
RCC_CFGR_PLLMUL9,
RCC_CFGR_PLLMUL10,
RCC_CFGR_PLLMUL11,
RCC_CFGR_PLLMUL12,
RCC_CFGR_PLLMUL13,
RCC_CFGR_PLLMUL14,
RCC_CFGR_PLLMUL15,
RCC_CFGR_PLLMUL16,
} PLLML_EN;
/* Select the PLL clock source */
//#define PLL_SOURCE_HSI // HSI (~8MHz) used to clock the PLL, and the PLL is used as system clock source
#define PLL_SOURCE_HSE // HSE (8MHz) used to clock the PLL, and the PLL is used as system clock source
//#define PLL_SOURCE_HSE_BYPASS // HSE bypassed with an external clock (8MHz, coming from ST-Link) used to clock
// the PLL, and the PLL is used as system clock source
uint32_t SystemCoreClock = 48000000;
const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
static void SetSysClock (void);
/**
* @brief Setup the microcontroller system.
* Initialize the Embedded Flash Interface, the PLL and update the
* SystemCoreClock variable.
* @param None
* @retval None
*/
extern "C"
void SystemInit (void) {
/* Set HSION bit */
RCC.CR.R |= (uint32_t) 0x00000001;
/* Reset SW[1:0], HPRE[3:0], PPRE[2:0], ADCPRE and MCOSEL[2:0] bits */
RCC.CFGR.R &= (uint32_t) 0xF8FFB80C;
/* Reset HSEON, CSSON and PLLON bits */
RCC.CR.R &= (uint32_t) 0xFEF6FFFF;
/* Reset HSEBYP bit */
RCC.CR.R &= (uint32_t) 0xFFFBFFFF;
/* Reset PLLSRC, PLLXTPRE and PLLMUL[3:0] bits */
RCC.CFGR.R &= (uint32_t) 0xFFC0FFFF;
/* Reset PREDIV1[3:0] bits */
RCC.CFGR2.R &= (uint32_t) 0xFFFFFFF0;
/* Reset USARTSW[1:0], I2CSW, CECSW and ADCSW bits */
RCC.CFGR3.R &= (uint32_t) 0xFFFFFEAC;
/* Reset HSI14 bit */
RCC.CR2.R &= (uint32_t) 0xFFFFFFFE;
/* Disable all interrupts */
RCC.CIR.R = 0x00000000u;
/* Configure the System clock frequency, AHB/APBx prescalers and Flash settings */
SetSysClock();
}
/**
* @brief Update SystemCoreClock according to Clock Register Values
* The SystemCoreClock variable contains the core clock (HCLK), it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock (HCLK) changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
*
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
*
* - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**)
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
*
* (*) HSI_VALUE is a constant defined in stm32f0xx.h file (default value
* 8 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (**) HSE_VALUE is a constant defined in stm32f0xx.h file (default value
* 8 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
* @param None
* @retval None
*/
extern "C"
void SystemCoreClockUpdate (void) {
uint32_t prediv1factor, pllmull;
//! [EnumExampleSW_EN_Use]
switch (RCC.CFGR.B.SWS) {
case USEHSI: /* HSI used as system clock */
SystemCoreClock = HSI_VALUE;
break;
case USEHSE: /* HSE used as system clock */
SystemCoreClock = HSE_VALUE;
break;
case USEPLL: /* PLL used as system clock */
/* Get PLL clock source and multiplication factor */
pllmull = RCC.CFGR.B.PLLMUL + 2u;
// ...
//! [EnumExampleSW_EN_Use]
if (RCC.CFGR.B.PLLSRC == RESET) {
/* HSI oscillator clock divided by 2 selected as PLL clock entry */
SystemCoreClock = (HSI_VALUE >> 1) * pllmull;
} else {
prediv1factor = RCC.CFGR2.B.PREDIV + 1;
/* HSE oscillator clock selected as PREDIV1 clock entry */
SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull;
}
break;
default: /* HSI used as system clock */
SystemCoreClock = HSI_VALUE;
break;
}
/* Compute HCLK clock frequency */
/* Get HCLK prescaler */
pllmull = AHBPrescTable[RCC.CFGR.B.HPRE];
/* HCLK clock frequency */
SystemCoreClock >>= pllmull;
}
/**
* @brief Configures the System clock frequency, AHB/APBx prescalers and Flash
* settings.
* @note This function should be called only once the RCC clock configuration
* is reset to the default reset state (done in SystemInit() function).
* @param None
* @retval None
*/
static void SetSysClock (void) {
/* SYSCLK, HCLK, PCLK configuration */
#if defined (PLL_SOURCE_HSI)
/* At this stage the HSI is already enabled */
/* Enable Prefetch Buffer and set Flash Latency */
Flash.ACR.setbit([] (auto & r) -> auto { // C++14
r.B.PRFTBE = SET;
r.B.LATENCY = SET;
return r.R;
});
RCC.CFGR.modify([] (auto & r) -> auto {
r.B.HPRE = 0;
r.B.PPRE = 0;
r.B.PLLSRC = RESET;
r.B.PLLXTPRE = RESET;
r.B.PLLMUL = RCC_CFGR_PLLMUL12;
return r.R;
});
/* Enable PLL */
RCC.CR.B.PLLON = SET;
/* Wait till PLL is ready */
while ((RCC.CR.B.PLLRDY) == RESET);
/* Select PLL as system clock source */
RCC.CFGR.B.SW = USEPLL;
/* Wait till PLL is used as system clock source */
while (RCC.CFGR.B.SWS != USEPLL);
#else
#if defined (PLL_SOURCE_HSE)
/* Enable HSE */
RCC.CR.B.HSEON = SET;
#elif defined (PLL_SOURCE_HSE_BYPASS)
/* HSE oscillator bypassed with external clock */
RCC.CR.B.HSEON = SET;
RCC.CR.B.HSEBYP = SET;
#endif /* PLL_SOURCE_HSE */
__IO uint32_t StartUpCounter = 0;
__IO uint32_t HSEStatus;
/* Wait till HSE is ready and if Time out is reached exit */
do {
HSEStatus = RCC.CR.B.HSERDY;
StartUpCounter++;
} while ((HSEStatus == RESET) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
HSEStatus = RCC.CR.B.HSERDY;
if (HSEStatus == SET) {
/* Enable Prefetch Buffer and set Flash Latency */
Flash.ACR.setbit([] (auto & r) -> uint32_t {
r.B.PRFTBE = SET;
r.B.LATENCY = SET;
return r.R;
});
RCC.CFGR.modify([] (auto & r) -> uint32_t {
r.B.HPRE = 0;
r.B.PPRE = 0;
r.B.PLLSRC = SET;
r.B.PLLXTPRE = RESET;
r.B.PLLMUL = RCC_CFGR_PLLMUL12;
return r.R;
});
/* Enable PLL */
RCC.CR.B.PLLON = SET;
/* Wait till PLL is ready */
while ((RCC.CR.B.PLLRDY) == RESET);
/* Select PLL as system clock source */
RCC.CFGR.B.SW = USEPLL;
/* Wait till PLL is used as system clock source */
while (RCC.CFGR.B.SWS != USEPLL);
} else {
/* If HSE fails to start-up, the application will have wrong clock
configuration. User can add here some code to deal with this error */
}
#endif /* PLL_SOURCE_HSI */
}

17
stm32f051/system.h Normal file
View file

@ -0,0 +1,17 @@
#ifndef __SYSTEM_STM32F0XX_H
#define __SYSTEM_STM32F0XX_H
#ifdef __cplusplus
extern "C" {
#endif
extern uint32_t SystemCoreClock; /*!< System Clock Frequency (Core Clock) */
extern void SystemInit(void);
extern void SystemCoreClockUpdate(void);
#ifdef __cplusplus
}
#endif
#endif /*__SYSTEM_STM32F0XX_H */

110
stm32f051/usart.cpp Normal file
View file

@ -0,0 +1,110 @@
#include "STM32F0x1.h"
#include "CortexM0.h" // NVIC_EnableIRQ
#include "gpio.h"
#include "usart.h"
extern "C" uint32_t SystemCoreClock;
static Usart * Instance = nullptr;
void Usart::irq (void) {
volatile USART1_Type::ISR_DEF status (USART1.ISR); // načti status přerušení
char tdata;
volatile char rdata;
if (status.B.TC) { // od vysílače
if (tx_ring.Read (tdata)) { // pokud máme data
USART1.TDR.R = (uint32_t) tdata & 0xFFu;// zapíšeme do výstupu
} else { // pokud ne
//USART1.CR1.B.RE = SET; // povol prijem
USART1.CR1.B.TCIE = RESET; // je nutné zakázat přerušení od vysílače
}
}
if (status.B.RXNE) { // od přijímače
rdata = (USART1.RDR.R) & 0xFFu; // načteme data
(void) rdata; // zahodime
}
}
/// Voláno z čistého C - startup.c
extern "C" void USART1_IRQHandler (void) {
if (Instance) Instance->irq();
};
//! [MembersConstructorExample]
Usart::Usart(const uint32_t baud) noexcept : BaseLayer(), tx_ring() {
//! [MembersConstructorExample]
if (Instance) return; // Chyba - jedina instance
Instance = this;
// 1. Clock Enable
RCC.APB2ENR.B.USART1EN = SET;
// 2. GPIO Alternate Config
GpioClass txp (GpioPortA, 9, GPIO_Mode_AF);
GpioClass rxp (GpioPortA, 10, GPIO_Mode_AF);
txp.setAF (1);
rxp.setAF (1);
// 4. NVIC
NVIC_EnableIRQ (USART1_IRQn);
uint32_t tmp = 0;
// 5. USART registry 8.bit bez parity
USART1.CR1.modify([] (USART1_Type::CR1_DEF & r) -> uint32_t { // pro ilustraci, co by bylo auto
r.B.TE = SET;
//r.B.RE = SET; // příjem je zde zbytečný
//r.B.RXNEIE = SET;
return r.R;
});
USART1.CR2.R = 0;
USART1.CR3.B.OVRDIS = SET;
// Tuhle část už vezmeme přímo z knihovny, jen ty hodiny zjednodušíme na SystemCoreClock
uint32_t apbclock = SystemCoreClock;
uint32_t integerdivider, fractionaldivider;
/* Determine the integer part */
if (USART1.CR1.B.OVER8 != RESET) {
/* Integer part computing in case Oversampling mode is 8 Samples */
integerdivider = ((25u * apbclock) / (2u * (baud)));
} else {
/* Integer part computing in case Oversampling mode is 16 Samples */
integerdivider = ((25u * apbclock) / (4u * (baud)));
}
tmp = (integerdivider / 100u) << 4;
/* Determine the fractional part */
fractionaldivider = integerdivider - (100u * (tmp >> 4));
/* Implement the fractional part in the register */
if (USART1.CR1.B.OVER8 != RESET) {
tmp |= ((((fractionaldivider * 8u ) + 50u) / 100u)) & ((uint8_t)0x07u);
} else {
tmp |= ((((fractionaldivider * 16u) + 50u) / 100u)) & ((uint8_t)0x0Fu);
}
/* Write to USART BRR */
USART1.BRR.R = (uint16_t)tmp;
USART1.CR1.B.UE = SET; // nakonec povolit globálně
}
//! [VirtualMethodBottom]
uint32_t Usart::Down (const char * data, const uint32_t len) {
uint32_t res; // výsledek, musí žít i po ukončení smyčky
for (res=0; res<len; res++) if (!tx_ring.Write(data[res])) break;
USART1.CR1.B.TCIE = SET; // po povolení přerušení okamžitě přeruší
return res;
}
//! [VirtualMethodBottom]
void Usart::SetHalfDuplex (const bool on) const {
USART1.CR1.B.UE = RESET; // zakázat, jinak nelze nastavovat
if (on) USART1.CR3.B.HDSEL = SET; // poloduplex on
else USART1.CR3.B.HDSEL = RESET; // poloduplex off
USART1.CR1.B.UE = SET; // nakonec povolit globálně
}
void Usart::SetRS485 (const bool polarity) const {
USART1.CR1.B.UE = RESET; // zakázat, jinak nelze nastavovat
// Nastavit pin DE (RTS)
GpioClass de (GpioPortA, 12u, GPIO_Mode_AF);
de.setAF (1u);
// Nastavení driveru
USART1.CR3.B.DEM = SET; // povolit DE v USARTu
if (polarity) USART1.CR3.B.DEP = SET;
else USART1.CR3.B.DEP = RESET;
// A nakonec doby vybavení (přesah) - to je hodně užitečné
//! [LambdaExampleUsage]
USART1.CR1.modify([] (auto & r) -> auto {
r.B.DEAT = 1u; // doba vybavení před start bitem - 16 ~= 1 bit, 0..31
r.B.DEDT = 1u; // doba vybavení po stop bitu - 16 ~= 1 bit, 0..31
return r.R;
});
//! [LambdaExampleUsage]
USART1.CR1.B.UE = SET;
}