RISC-V/minichlink/pgm-wch-linke.c

787 lines
27 KiB
C
Raw Normal View History

2025-02-05 15:55:13 +01:00
// The "bootloader" blob is (C) WCH.
// Tricky: You need to use wch link to use WCH-LinkRV.
// you can always uninstall it in device manager. It will be under USB devices or something like that at the bottom.
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include "libusb.h"
#include "minichlink.h"
struct LinkEProgrammerStruct
{
void * internal;
libusb_device_handle * devh;
int lasthaltmode; // For non-003 chips
};
static void printChipInfo(enum RiscVChip chip) {
switch(chip) {
case CHIP_CH32V10x:
fprintf(stderr, "Detected: CH32V10x\n");
break;
case CHIP_CH57x:
fprintf(stderr, "Detected: CH57x\n");
break;
case CHIP_CH56x:
fprintf(stderr, "Detected: CH56x\n");
break;
case CHIP_CH32V20x:
fprintf(stderr, "Detected: CH32V20x\n");
break;
case CHIP_CH32V30x:
fprintf(stderr, "Detected: CH32V30x\n");
break;
case CHIP_CH58x:
fprintf(stderr, "Detected: CH58x\n");
break;
case CHIP_CH32V003:
fprintf(stderr, "Detected: CH32V003\n");
break;
}
}
static int checkChip(enum RiscVChip chip) {
switch(chip) {
case CHIP_CH32V003:
return 0; // Use direct mode
case CHIP_CH32V10x:
case CHIP_CH32V20x:
case CHIP_CH32V30x:
return 1; // Use binary blob mode
case CHIP_CH56x:
case CHIP_CH57x:
case CHIP_CH58x:
default:
return -1; // Not supported yet
}
}
// For non-ch32v003 chips.
//static int LEReadBinaryBlob( void * d, uint32_t offset, uint32_t amount, uint8_t * readbuff );
static int InternalLinkEHaltMode( void * d, int mode );
static int LEWriteBinaryBlob( void * d, uint32_t address_to_write, uint32_t len, uint8_t * blob );
#define WCHTIMEOUT 5000
#define WCHCHECK(x) if( (status = x) ) { fprintf( stderr, "Bad USB Operation on " __FILE__ ":%d (%d)\n", __LINE__, status ); exit( status ); }
void wch_link_command( libusb_device_handle * devh, const void * command_v, int commandlen, int * transferred, uint8_t * reply, int replymax )
{
uint8_t * command = (uint8_t*)command_v;
uint8_t buffer[1024];
int got_to_recv = 0;
int status;
int transferred_local;
if( !transferred ) transferred = &transferred_local;
status = libusb_bulk_transfer( devh, 0x01, command, commandlen, transferred, WCHTIMEOUT );
if( status ) goto sendfail;
got_to_recv = 1;
if( !reply )
{
reply = buffer; replymax = sizeof( buffer );
}
// printf("wch_link_command send (%d)", commandlen); for(int i = 0; i< commandlen; printf(" %02x",command[i++])); printf("\n");
status = libusb_bulk_transfer( devh, 0x81, reply, replymax, transferred, WCHTIMEOUT );
// printf("wch_link_command reply (%d)", *transferred); for(int i = 0; i< *transferred; printf(" %02x",reply[i++])); printf("\n");
if( status ) goto sendfail;
return;
sendfail:
fprintf( stderr, "Error sending WCH command (%s): ", got_to_recv?"on recv":"on send" );
int i;
for( i = 0; i < commandlen; i++ )
{
printf( "%02x ", command[i] );
}
printf( "\n" );
exit( status );
}
static void wch_link_multicommands( libusb_device_handle * devh, int nrcommands, ... )
{
int i;
va_list argp;
va_start(argp, nrcommands);
for( i = 0; i < nrcommands; i++ )
{
int clen = va_arg(argp, int);
wch_link_command( devh, va_arg(argp, char *), clen, 0, 0, 0 );
}
va_end( argp );
}
static inline libusb_device_handle * wch_link_base_setup( int inhibit_startup )
{
libusb_context * ctx = 0;
int status;
status = libusb_init(&ctx);
if (status < 0) {
fprintf( stderr, "Error: libusb_init_context() returned %d\n", status );
exit( status );
}
libusb_device **list;
ssize_t cnt = libusb_get_device_list(ctx, &list);
ssize_t i = 0;
libusb_device *found = NULL;
libusb_device * found_arm_programmer = NULL;
libusb_device * found_programmer_in_iap = NULL;
for (i = 0; i < cnt; i++) {
libusb_device *device = list[i];
struct libusb_device_descriptor desc;
int r = libusb_get_device_descriptor(device,&desc);
if( r == 0 && desc.idVendor == 0x1a86 && desc.idProduct == 0x8010 ) { found = device; }
if( r == 0 && desc.idVendor == 0x1a86 && desc.idProduct == 0x8012) { found_arm_programmer = device; }
if( r == 0 && desc.idVendor == 0x4348 && desc.idProduct == 0x55e0) { found_programmer_in_iap = device; }
}
if( !found )
{
// On a lark see if we have a programmer which got stuck in IAP mode.
if (found_arm_programmer) {
fprintf( stderr, "Warning: found at least one WCH-LinkE in ARM programming mode. Attempting automatic switch to RISC-V. Will need a to re-attempt.\n" );
fprintf( stderr, "For more information, you may need to change it to RISC-V mode as per https://github.com/cnlohr/ch32v003fun/issues/227\n" );
// Just in case we got stuck in IAP mode, try sending 0x83 to eject.
libusb_device_handle * devh = 0;
status = libusb_open( found_arm_programmer, &devh );
if( status )
{
fprintf( stderr, "Found programmer in ARM mode, but couldn't open it.\n" );
exit( -10 );
}
// https://github.com/wagiminator/MCU-Flash-Tools/blob/main/rvmode.py
uint8_t rbuff[4] = { 0x81, 0xff, 0x01, 0x52 };
int transferred = 0;
libusb_bulk_transfer( devh, 0x02, rbuff, 4, &transferred, 1 );
fprintf( stderr, "RISC-V command sent (%d)\n", transferred );
exit( -3 );
}
if( found_programmer_in_iap )
{
// Just in case we got stuck in IAP mode, try sending 0x83 to eject.
fprintf( stderr, "Found programmer in IAP mode. Attempting to eject it out of IAP.\n" );
libusb_device_handle * devh = 0;
status = libusb_open( found_programmer_in_iap, &devh );
if( status )
{
fprintf( stderr, "Found programmer in IAP mode, but couldn't open it.\n" );
exit( -10 );
}
uint8_t rbuff[4];
int transferred = 0;
rbuff[0] = 0x83;
libusb_bulk_transfer( devh, 0x02, rbuff, 1, &transferred, 1 );
fprintf( stderr, "Eject command sent (%d)\n", transferred );
exit( -3 );
}
return 0;
}
libusb_device_handle * devh;
status = libusb_open( found, &devh );
if( status )
{
fprintf( stderr, "Error: couldn't open wch link device (libusb_open() = %d)\n", status );
return 0;
}
WCHCHECK( libusb_claim_interface(devh, 0) );
uint8_t rbuff[1024];
int transferred;
libusb_bulk_transfer( devh, 0x81, rbuff, 1024, &transferred, 1 ); // Clear out any pending transfers. Don't wait though.
return devh;
}
// DMI_OP decyphered From https://github.com/karlp/openocd-hacks/blob/27af153d4a373f29ad93dab28a01baffb7894363/src/jtag/drivers/wlink.c
// Thanks, CW2 for pointing this out. See DMI_OP for more info.
int LEWriteReg32( void * dev, uint8_t reg_7_bit, uint32_t command )
{
libusb_device_handle * devh = ((struct LinkEProgrammerStruct*)dev)->devh;
const uint8_t iOP = 2; // op 2 = write
uint8_t req[] = {
0x81, 0x08, 0x06, reg_7_bit,
(command >> 24) & 0xff,
(command >> 16) & 0xff,
(command >> 8) & 0xff,
(command >> 0) & 0xff,
iOP };
uint8_t resp[128];
int resplen;
wch_link_command( devh, req, sizeof(req), &resplen, resp, sizeof(resp) );
if( resplen != 9 || resp[8] == 0x02 || resp[8] == 0x03 ) //|| resp[3] != reg_7_bit )
{
fprintf( stderr, "Error setting write reg. Tell cnlohr. Maybe we should allow retries here?\n" );
fprintf( stderr, "RR: %d :", resplen );
int i;
for( i = 0; i < resplen; i++ )
{
fprintf( stderr, "%02x ", resp[i] );
}
fprintf( stderr, "\n" );
}
return 0;
}
int LEReadReg32( void * dev, uint8_t reg_7_bit, uint32_t * commandresp )
{
libusb_device_handle * devh = ((struct LinkEProgrammerStruct*)dev)->devh;
const uint8_t iOP = 1; // op 1 = read
uint32_t transferred;
uint8_t rbuff[128] = { 0 };
uint8_t req[] = {
0x81, 0x08, 0x06, reg_7_bit,
0, 0, 0, 0,
iOP };
wch_link_command( devh, req, sizeof( req ), (int*)&transferred, rbuff, sizeof( rbuff ) );
*commandresp = ( rbuff[4]<<24 ) | (rbuff[5]<<16) | (rbuff[6]<<8) | (rbuff[7]<<0);
if( transferred != 9 || rbuff[8] == 0x02 || rbuff[8] == 0x03 ) //|| rbuff[3] != reg_7_bit )
{
fprintf( stderr, "Error setting write reg. Tell cnlohr. Maybe we should allow retries here?\n" );
fprintf( stderr, "RR: %d :", transferred );
int i;
for( i = 0; i < transferred; i++ )
{
fprintf( stderr, "%02x ", rbuff[i] );
}
fprintf( stderr, "\n" );
}
/*
printf( "RR: %d :", transferred );
int i;
for( i = 0; i < transferred; i++ )
{
printf( "%02x ", rbuff[i] );
}
printf( "\n" );
*/
return 0;
}
int LEFlushLLCommands( void * dev )
{
return 0;
}
static int LESetupInterface( void * d )
{
libusb_device_handle * dev = ((struct LinkEProgrammerStruct*)d)->devh;
struct InternalState * iss = (struct InternalState*)(((struct ProgrammerStructBase*)d)->internal);
uint8_t rbuff[1024];
uint32_t transferred = 0;
// This puts the processor on hold to allow the debugger to run.
wch_link_command( dev, "\x81\x0d\x01\x03", 4, (int*)&transferred, rbuff, 1024 ); // Reply: Ignored, 820d050900300500
// Place part into reset.
wch_link_command( dev, "\x81\x0d\x01\x01", 4, (int*)&transferred, rbuff, 1024 ); // Reply is: "\x82\x0d\x04\x02\x08\x02\x00"
switch(rbuff[5]) {
case 1:
fprintf(stderr, "WCH Programmer is CH549 version %d.%d\n",rbuff[3], rbuff[4]);
break;
case 2:
fprintf(stderr, "WCH Programmer is CH32V307 version %d.%d\n",rbuff[3], rbuff[4]);
break;
case 3:
fprintf(stderr, "WCH Programmer is CH32V203 version %d.%d\n",rbuff[3], rbuff[4]);
break;
case 4:
fprintf(stderr, "WCH Programmer is LinkB version %d.%d\n",rbuff[3], rbuff[4]);
break;
case 18:
fprintf(stderr, "WCH Programmer is LinkE version %d.%d\n",rbuff[3], rbuff[4]);
break;
default:
fprintf(stderr, "Unknown WCH Programmer %02x (Ver %d.%d)\n", rbuff[5], rbuff[3], rbuff[4]);
break;
}
// TODO: What in the world is this? It doesn't appear to be needed.
wch_link_command( dev, "\x81\x0c\x02\x09\x01", 5, 0, 0, 0 ); //Reply is: 820c0101
// Note from further debugging:
// My capture differs in this case: \x05 instead of \x09 -> But does not seem to be needed
//wch_link_command( dev, "\x81\x0c\x02\x05\x01", 5, 0, 0, 0 ); //Reply is: 820c0101
// This puts the processor on hold to allow the debugger to run.
int already_tried_reset = 0;
do
{
wch_link_command( dev, "\x81\x0d\x01\x02", 4, (int*)&transferred, rbuff, 1024 ); // Reply: Ignored, 820d050900300500
if (rbuff[0] == 0x81 && rbuff[1] == 0x55 && rbuff[2] == 0x01 ) // && rbuff[3] == 0x01 )
{
// The following code may try to execute a few times to get the processor to actually reset.
// This code could likely be much better.
fprintf(stderr, "link error, nothing connected to linker (%d = [%02x %02x %02x %02x]). Trying to put processor in hold and retrying.\n", transferred, rbuff[0], rbuff[1], rbuff[2], rbuff[3]);
// Give up if too long
if( already_tried_reset > 10 )
return -1;
wch_link_multicommands( (libusb_device_handle *)dev, 1, 4, "\x81\x0d\x01\x13" ); // Try forcing reset line low.
wch_link_command( (libusb_device_handle *)dev, "\x81\x0d\x01\xff", 4, 0, 0, 0); //Exit programming
if( already_tried_reset > 3 )
{
MCF.DelayUS( iss, 5000 );
wch_link_command( dev, "\x81\x0d\x01\x03", 4, (int*)&transferred, rbuff, 1024 ); // Reply: Ignored, 820d050900300500
}
else
{
MCF.DelayUS( iss, 5000 );
}
wch_link_multicommands( (libusb_device_handle *)dev, 1, 4, "\x81\x0d\x01\x14" ); // Release reset line.
wch_link_multicommands( (libusb_device_handle *)dev, 3, 4, "\x81\x0b\x01\x01", 4, "\x81\x0d\x01\x02", 4, "\x81\x0d\x01\xff" );
already_tried_reset++;
}
else
{
break;
}
} while( 1 );
if(rbuff[3] == 0x08 || rbuff[3] > 0x09) {
fprintf( stderr, "Chip Type unknown. Aborting...\n" );
return -1;
}
enum RiscVChip chip = (enum RiscVChip)rbuff[3];
printChipInfo(chip);
int result = checkChip(chip);
if( result == 1 ) // Using blob write
{
fprintf( stderr, "Using binary blob write for operation.\n" );
MCF.WriteBinaryBlob = LEWriteBinaryBlob;
iss->sector_size = 256;
wch_link_command( dev, "\x81\x0d\x01\x03", 4, (int*)&transferred, rbuff, 1024 ); // Reply: Ignored, 820d050900300500
} else if( result < 0 ) {
fprintf( stderr, "Chip type not supported. Aborting...\n" );
return -1;
}
iss->target_chip_type = chip;
// For some reason, if we don't do this sometimes the programmer starts in a hosey mode.
MCF.WriteReg32( d, DMCONTROL, 0x80000001 ); // Make the debug module work properly.
MCF.WriteReg32( d, DMCONTROL, 0x80000001 ); // Initiate a halt request.
MCF.WriteReg32( d, DMCONTROL, 0x80000001 ); // No, really make sure.
MCF.WriteReg32( d, DMABSTRACTCS, 0x00000700 ); // Ignore any pending errors.
MCF.WriteReg32( d, DMABSTRACTAUTO, 0 );
MCF.WriteReg32( d, DMCOMMAND, 0x00221000 ); // Read x0 (Null command) with nopostexec (to fix v307 read issues)
int r = 0;
r |= MCF.WaitForDoneOp( d, 0 );
if( r )
{
fprintf( stderr, "Fault on setup\n" );
}
else
{
fprintf( stderr, "Setup success\n" );
}
// This puts the processor on hold to allow the debugger to run.
// Recommended to switch to 05 from 09 by Alexander M
// wch_link_command( dev, "\x81\x11\x01\x09", 4, (int*)&transferred, rbuff, 1024 ); // Reply: Chip ID + Other data (see below)
wch_link_command( dev, "\x81\x11\x01\x05", 4, (int*)&transferred, rbuff, 1024 ); // Reply: Chip ID + Other data (see below)
if( transferred != 20 )
{
fprintf( stderr, "Error: could not get part status\n" );
return -1;
}
const uint32_t flskb = ((uint32_t)rbuff[2]<<8) | rbuff[3];
fprintf( stderr, "Flash Storage: %d kB\n", flskb ); // Is this Flash size?
fprintf( stderr, "Part UUID : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x\n", rbuff[4], rbuff[5], rbuff[6], rbuff[7], rbuff[8], rbuff[9], rbuff[10], rbuff[11] );
fprintf( stderr, "PFlags : %02x-%02x-%02x-%02x\n", rbuff[12], rbuff[13], rbuff[14], rbuff[15] );
fprintf( stderr, "Part Type (B): %02x-%02x-%02x-%02x\n", rbuff[16], rbuff[17], rbuff[18], rbuff[19] );
// Check for read protection
wch_link_command( dev, "\x81\x06\x01\x01", 4, (int*)&transferred, rbuff, 1024 );
if(transferred != 4) {
fprintf(stderr, "Error: could not get read protection status\n");
return -1;
}
if(rbuff[3] == 0x01) {
fprintf(stderr, "Read protection: enabled\n");
} else {
fprintf(stderr, "Read protection: disabled\n");
}
iss->flash_size = flskb * 0x400u;
if (chip == CHIP_CH32V20x) { // diferent version chip
if (flskb > 32u) iss->ram_size = 20u * 0x400u; // 64K
else iss->ram_size = 10u * 0x400u; // 32K
}
return 0;
}
static int LEControl3v3( void * d, int bOn )
{
libusb_device_handle * dev = ((struct LinkEProgrammerStruct*)d)->devh;
if( bOn )
wch_link_command( (libusb_device_handle *)dev, "\x81\x0d\x01\x09", 4, 0, 0, 0 );
else
wch_link_command( (libusb_device_handle *)dev, "\x81\x0d\x01\x0a", 4, 0, 0, 0 );
return 0;
}
static int LEControl5v( void * d, int bOn )
{
libusb_device_handle * dev = ((struct LinkEProgrammerStruct*)d)->devh;
if( bOn )
wch_link_command( (libusb_device_handle *)dev, "\x81\x0d\x01\x0b", 4, 0, 0, 0 );
else
wch_link_command( (libusb_device_handle *)dev, "\x81\x0d\x01\x0c", 4, 0, 0, 0 );
return 0;
}
static int LEUnbrick( void * d )
{
printf( "Sending unbrick\n" );
libusb_device_handle * dev = ((struct LinkEProgrammerStruct*)d)->devh;
wch_link_command( (libusb_device_handle *)dev, "\x81\x0d\x01\x0f\x09", 5, 0, 0, 0 );
printf( "Done unbrick\n" );
return 0;
}
static int LEConfigureNRSTAsGPIO( void * d, int one_if_yes_gpio )
{
libusb_device_handle * dev = ((struct LinkEProgrammerStruct*)d)->devh;
if( one_if_yes_gpio )
{
wch_link_multicommands( (libusb_device_handle *)dev, 2, 11, "\x81\x06\x08\x02\xff\xff\xff\xff\xff\xff\xff", 4, "\x81\x0b\x01\x01" );
}
else
{
wch_link_multicommands( (libusb_device_handle *)dev, 2, 11, "\x81\x06\x08\x02\xf7\xff\xff\xff\xff\xff\xff", 4, "\x81\x0b\x01\x01" );
}
return 0;
}
static int LEConfigureReadProtection( void * d, int one_if_yes_protect )
{
libusb_device_handle * dev = ((struct LinkEProgrammerStruct*)d)->devh;
if( one_if_yes_protect )
{
wch_link_multicommands( (libusb_device_handle *)dev, 2, 11, "\x81\x06\x08\x03\xf7\xff\xff\xff\xff\xff\xff", 4, "\x81\x0b\x01\x01" );
}
else
{
wch_link_multicommands( (libusb_device_handle *)dev, 2, 11, "\x81\x06\x08\x02\xf7\xff\xff\xff\xff\xff\xff", 4, "\x81\x0b\x01\x01" );
}
return 0;
}
int LEExit( void * d )
{
libusb_device_handle * dev = ((struct LinkEProgrammerStruct*)d)->devh;
wch_link_command( (libusb_device_handle *)dev, "\x81\x0d\x01\xff", 4, 0, 0, 0);
return 0;
}
void * TryInit_WCHLinkE()
{
libusb_device_handle * wch_linke_devh;
wch_linke_devh = wch_link_base_setup(0);
if( !wch_linke_devh ) return 0;
struct LinkEProgrammerStruct * ret = malloc( sizeof( struct LinkEProgrammerStruct ) );
memset( ret, 0, sizeof( *ret ) );
ret->devh = wch_linke_devh;
ret->lasthaltmode = 0;
MCF.ReadReg32 = LEReadReg32;
MCF.WriteReg32 = LEWriteReg32;
MCF.FlushLLCommands = LEFlushLLCommands;
MCF.SetupInterface = LESetupInterface;
MCF.Control3v3 = LEControl3v3;
MCF.Control5v = LEControl5v;
MCF.Unbrick = LEUnbrick;
MCF.ConfigureNRSTAsGPIO = LEConfigureNRSTAsGPIO;
MCF.ConfigureReadProtection = LEConfigureReadProtection;
MCF.Exit = LEExit;
return ret;
};
#if 1
// Flash Bootloader for V20x and V30x series MCUs
const uint8_t * bootloader_v1 = (const uint8_t*)
"\x93\x77\x15\x00\x41\x11\x99\xCF\xB7\x06\x67\x45\xB7\x27\x02\x40" \
"\x93\x86\x36\x12\x37\x97\xEF\xCD\xD4\xC3\x13\x07\xB7\x9A\xD8\xC3" \
"\xD4\xD3\xD8\xD3\x93\x77\x25\x00\x9D\xC7\xB7\x27\x02\x40\x98\x4B" \
"\xAD\x66\x37\x38\x00\x40\x13\x67\x47\x00\x98\xCB\x98\x4B\x93\x86" \
"\xA6\xAA\x13\x67\x07\x04\x98\xCB\xD8\x47\x05\x8B\x63\x1F\x07\x10" \
"\x98\x4B\x6D\x9B\x98\xCB\x93\x77\x45\x00\xA9\xCB\x93\x07\xF6\x07" \
"\x9D\x83\x2E\xC0\x2D\x68\x81\x76\x3E\xC4\xB7\x08\x02\x00\xB7\x27" \
"\x02\x40\x37\x33\x00\x40\x13\x08\xA8\xAA\xFD\x16\x98\x4B\x33\x67" \
"\x17\x01\x98\xCB\x02\x47\xD8\xCB\x98\x4B\x13\x67\x07\x04\x98\xCB" \
"\xD8\x47\x05\x8B\x71\xEF\x98\x4B\x75\x8F\x98\xCB\x02\x47\x13\x07" \
"\x07\x08\x3A\xC0\x22\x47\x7D\x17\x3A\xC4\x69\xFB\x93\x77\x85\x00" \
"\xED\xC3\x93\x07\xF6\x07\x2E\xC0\x9D\x83\x37\x27\x02\x40\x3E\xC4" \
"\x1C\x4B\xC1\x66\x37\x08\x08\x00\xD5\x8F\x1C\xCB\xA1\x48\x37\x17" \
"\x00\x20\xB7\x27\x02\x40\x37\x03\x04\x00\x94\x4B\xB3\xE6\x06\x01" \
"\x94\xCB\xD4\x47\x85\x8A\xF5\xFE\x82\x46\x3A\x8E\x36\xC2\x46\xC6" \
"\x92\x46\x83\x2E\x07\x00\x41\x07\x23\xA0\xD6\x01\x92\x46\x83\x2E" \
"\x47\xFF\x23\xA2\xD6\x01\x92\x46\x83\x2E\x87\xFF\x23\xA4\xD6\x01" \
"\x92\x46\x03\x2E\xCE\x00\x23\xA6\xC6\x01\x94\x4B\xB3\xE6\x66\x00" \
"\x94\xCB\xD4\x47\x85\x8A\xF5\xFE\x92\x46\x3A\x8E\xC1\x06\x36\xC2" \
"\xB2\x46\xFD\x16\x36\xC6\xCD\xFE\x82\x46\xD4\xCB\x94\x4B\x93\xE6" \
"\x06\x04\x94\xCB\xD4\x47\x85\x8A\xF5\xFE\xD4\x47\xD1\x8A\x85\xC6" \
"\xD8\x47\xB7\x06\xF3\xFF\xFD\x16\x13\x67\x47\x01\xD8\xC7\x98\x4B" \
"\x21\x45\x75\x8F\x98\xCB\x41\x01\x02\x90\x23\x20\xD8\x00\xE9\xBD" \
"\x23\x20\x03\x01\x31\xBF\x82\x46\x93\x86\x06\x08\x36\xC0\xA2\x46" \
"\xFD\x16\x36\xC4\xB9\xFA\x98\x4B\xB7\x06\xF3\xFF\xFD\x16\x75\x8F" \
"\x98\xCB\x41\x89\x15\xC9\x2E\xC0\x0D\x06\x02\xC4\x09\x82\x32\xC6" \
"\xB7\x17\x00\x20\x98\x43\x13\x86\x47\x00\xA2\x47\x82\x46\x8A\x07" \
"\xB6\x97\x9C\x43\x63\x1C\xF7\x00\xA2\x47\x85\x07\x3E\xC4\xA2\x46" \
"\x32\x47\xB2\x87\xE3\xE0\xE6\xFE\x01\x45\x71\xBF\x41\x45\x61\xBF" \
"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" \
"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" \
"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff";
const uint8_t * bootloader_v2 = (const uint8_t*)
"\x93\x77\x15\x00\x41\x11\x99\xcf\xb7\x06\x67\x45\xb7\x27\x02\x40" \
"\x93\x86\x36\x12\x37\x97\xef\xcd\xd4\xc3\x13\x07\xb7\x9a\xd8\xc3" \
"\xd4\xd3\xd8\xd3\x93\x77\x25\x00\x95\xc7\xb7\x27\x02\x40\x98\x4b" \
"\xad\x66\x37\x38\x00\x40\x13\x67\x47\x00\x98\xcb\x98\x4b\x93\x86" \
"\xa6\xaa\x13\x67\x07\x04\x98\xcb\xd8\x47\x05\x8b\x61\xeb\x98\x4b" \
"\x6d\x9b\x98\xcb\x93\x77\x45\x00\xa9\xcb\x93\x07\xf6\x0f\xa1\x83" \
"\x2e\xc0\x2d\x68\x81\x76\x3e\xc4\xb7\x08\x02\x00\xb7\x27\x02\x40" \
"\x37\x33\x00\x40\x13\x08\xa8\xaa\xfd\x16\x98\x4b\x33\x67\x17\x01" \
"\x98\xcb\x02\x47\xd8\xcb\x98\x4b\x13\x67\x07\x04\x98\xcb\xd8\x47" \
"\x05\x8b\x41\xeb\x98\x4b\x75\x8f\x98\xcb\x02\x47\x13\x07\x07\x10" \
"\x3a\xc0\x22\x47\x7d\x17\x3a\xc4\x69\xfb\x93\x77\x85\x00\xd5\xcb" \
"\x93\x07\xf6\x0f\x2e\xc0\xa1\x83\x3e\xc4\x37\x27\x02\x40\x1c\x4b" \
"\xc1\x66\x41\x68\xd5\x8f\x1c\xcb\xb7\x16\x00\x20\xb7\x27\x02\x40" \
"\x93\x08\x00\x04\x37\x03\x20\x00\x98\x4b\x33\x67\x07\x01\x98\xcb" \
"\xd8\x47\x05\x8b\x75\xff\x02\x47\x3a\xc2\x46\xc6\x32\x47\x0d\xef" \
"\x98\x4b\x33\x67\x67\x00\x98\xcb\xd8\x47\x05\x8b\x75\xff\xd8\x47" \
"\x41\x8b\x39\xc3\xd8\x47\xc1\x76\xfd\x16\x13\x67\x07\x01\xd8\xc7" \
"\x98\x4b\x21\x45\x75\x8f\x98\xcb\x41\x01\x02\x90\x23\x20\xd8\x00" \
"\x25\xb7\x23\x20\x03\x01\xa5\xb7\x12\x47\x13\x8e\x46\x00\x94\x42" \
"\x14\xc3\x12\x47\x11\x07\x3a\xc2\x32\x47\x7d\x17\x3a\xc6\xd8\x47" \
"\x09\x8b\x75\xff\xf2\x86\x5d\xb7\x02\x47\x13\x07\x07\x10\x3a\xc0" \
"\x22\x47\x7d\x17\x3a\xc4\x49\xf3\x98\x4b\xc1\x76\xfd\x16\x75\x8f" \
"\x98\xcb\x41\x89\x15\xc9\x2e\xc0\x0d\x06\x02\xc4\x09\x82\x32\xc6" \
"\xb7\x17\x00\x20\x98\x43\x13\x86\x47\x00\xa2\x47\x82\x46\x8a\x07" \
"\xb6\x97\x9c\x43\x63\x1c\xf7\x00\xa2\x47\x85\x07\x3e\xc4\xa2\x46" \
"\x32\x47\xb2\x87\xe3\xe0\xe6\xfe\x01\x45\xbd\xbf\x41\x45\xad\xbf" \
"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" \
"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" \
"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" \
"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" \
"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" \
"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff";
int bootloader_len = 512;
#endif
static const uint8_t * GetFlashLoader( enum RiscVChip chip )
{
switch(chip) {
case CHIP_CH32V10x:
return bootloader_v1;
case CHIP_CH32V20x:
case CHIP_CH32V30x:
default:
return bootloader_v2;
}
}
static int InternalLinkEHaltMode( void * d, int mode )
{
libusb_device_handle * dev = ((struct LinkEProgrammerStruct*)d)->devh;
if( mode == ((struct LinkEProgrammerStruct*)d)->lasthaltmode )
return 0;
((struct LinkEProgrammerStruct*)d)->lasthaltmode = mode;
if( mode == 0 )
{
printf( "Holding in reset\n" );
// Part one "immediately" places the part into reset. Part 2 says when we're done, leave part in reset.
wch_link_multicommands( (libusb_device_handle *)dev, 2, 4, "\x81\x0d\x01\x02", 4, "\x81\x0d\x01\x01" );
}
else if( mode == 1 )
{
// This is clearly not the "best" method to exit reset. I don't know why this combination works.
wch_link_multicommands( (libusb_device_handle *)dev, 3, 4, "\x81\x0b\x01\x01", 4, "\x81\x0d\x01\x02", 4, "\x81\x0d\x01\xff" );
}
else
{
return -999;
}
return 0;
}
#if 0
static int LEReadBinaryBlob( void * d, uint32_t offset, uint32_t amount, uint8_t * readbuff )
{
libusb_device_handle * dev = ((struct LinkEProgrammerStruct*)d)->devh;
InternalLinkEHaltMode( d, 0 );
int i;
int status;
uint8_t rbuff[1024];
int transferred = 0;
int readbuffplace = 0;
wch_link_command( (libusb_device_handle *)dev, "\x81\x06\x01\x01", 4, 0, 0, 0 );
// Flush out any pending data.
libusb_bulk_transfer( (libusb_device_handle *)dev, 0x82, rbuff, 1024, &transferred, 1 );
// 3/8 = Read Memory
// First 4 bytes are big-endian location.
// Next 4 bytes are big-endian amount.
uint8_t readop[11] = { 0x81, 0x03, 0x08, };
readop[3] = (offset>>24)&0xff;
readop[4] = (offset>>16)&0xff;
readop[5] = (offset>>8)&0xff;
readop[6] = (offset>>0)&0xff;
readop[7] = (amount>>24)&0xff;
readop[8] = (amount>>16)&0xff;
readop[9] = (amount>>8)&0xff;
readop[10] = (amount>>0)&0xff;
wch_link_command( (libusb_device_handle *)dev, readop, 11, 0, 0, 0 );
// Perform operation
wch_link_command( (libusb_device_handle *)dev, "\x81\x02\x01\x0c", 4, 0, 0, 0 );
uint32_t remain = amount;
while( remain )
{
transferred = 0;
WCHCHECK( libusb_bulk_transfer( (libusb_device_handle *)dev, 0x82, rbuff, 1024, &transferred, WCHTIMEOUT ) );
memcpy( ((uint8_t*)readbuff) + readbuffplace, rbuff, transferred );
readbuffplace += transferred;
remain -= transferred;
}
// Flip internal endian. Must be done separately in case something was unaligned when
// reading.
for( i = 0; i < readbuffplace/4; i++ )
{
uint32_t r = ((uint32_t*)readbuff)[i];
((uint32_t*)readbuff)[i] = (r>>24) | ((r & 0xff0000) >> 8) | ((r & 0xff00)<<8) | (( r & 0xff )<<24);
}
return 0;
}
#endif
static int LEWriteBinaryBlob( void * d, uint32_t address_to_write, uint32_t len, uint8_t * blob )
{
libusb_device_handle * dev = ((struct LinkEProgrammerStruct*)d)->devh;
struct InternalState * iss = (struct InternalState*)(((struct LinkEProgrammerStruct*)d)->internal);
InternalLinkEHaltMode( d, 0 );
int i;
int status;
uint8_t rbuff[1024];
int transferred;
int padlen = ((len-1) & (~(iss->sector_size-1))) + iss->sector_size;
wch_link_command( (libusb_device_handle *)dev, "\x81\x06\x01\x01", 4, 0, 0, 0 );
wch_link_command( (libusb_device_handle *)dev, "\x81\x06\x01\x01", 4, 0, 0, 0 ); // Not sure why but it seems to work better when we request twice.
// This contains the write data quantity, in bytes. (The last 2 octets)
// Then it just rollllls on in.
char rksbuff[11] = { 0x81, 0x01, 0x08,
// Address to write
(uint8_t)(address_to_write >> 24), (uint8_t)(address_to_write >> 16),
(uint8_t)(address_to_write >> 8), (uint8_t)(address_to_write & 0xff),
// Length to write
(uint8_t)(len >> 24), (uint8_t)(len >> 16),
(uint8_t)(len >> 8), (uint8_t)(len & 0xff) };
wch_link_command( (libusb_device_handle *)dev, rksbuff, 11, 0, 0, 0 );
wch_link_command( (libusb_device_handle *)dev, "\x81\x02\x01\x05", 4, 0, 0, 0 );
const uint8_t *bootloader = GetFlashLoader(iss->target_chip_type);
int pplace = 0;
for( pplace = 0; pplace < bootloader_len; pplace += iss->sector_size )
{
WCHCHECK( libusb_bulk_transfer( (libusb_device_handle *)dev, 0x02, (uint8_t*)(bootloader+pplace), iss->sector_size, &transferred, WCHTIMEOUT ) );
}
for( i = 0; i < 10; i++ )
{
wch_link_command( (libusb_device_handle *)dev, "\x81\x02\x01\x07", 4, &transferred, rbuff, 1024 );
if( transferred == 4 && rbuff[0] == 0x82 && rbuff[1] == 0x02 && rbuff[2] == 0x01 && rbuff[3] == 0x07 )
{
break;
}
}
if( i == 10 )
{
fprintf( stderr, "Error, confusing responses to 02/01/07\n" );
exit( -109 );
}
wch_link_command( (libusb_device_handle *)dev, "\x81\x02\x01\x02", 4, 0, 0, 0 );
for( pplace = 0; pplace < padlen; pplace += iss->sector_size )
{
if( pplace + iss->sector_size > len )
{
uint8_t paddeddata[iss->sector_size];
int gap = pplace + iss->sector_size - len;
int okcopy = len - pplace;
memcpy( paddeddata, blob + pplace, okcopy );
memset( paddeddata + okcopy, 0xff, gap );
WCHCHECK( libusb_bulk_transfer( (libusb_device_handle *)dev, 0x02, paddeddata, iss->sector_size, &transferred, WCHTIMEOUT ) );
}
else
{
WCHCHECK( libusb_bulk_transfer( (libusb_device_handle *)dev, 0x02, blob+pplace, iss->sector_size, &transferred, WCHTIMEOUT ) );
}
}
return 0;
}