add Hamilton

This commit is contained in:
Kizarm 2023-12-02 14:12:25 +01:00
parent 775efe0f4a
commit 6743d655b3
9 changed files with 946 additions and 0 deletions

114
Hamilton/equations.html Normal file
View file

@ -0,0 +1,114 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="text/html; charset=utf-8">
</META>
<title>Lagrange
</title>
<style>body {background-color: rgb(192,255,255);} h2 {color: rgb(64,0,192);} h3 {color: rgb(192,0,0);} table {color: rgb(128,0,128);}
</style>
<script type="text/x-mathjax-config">MathJax.Hub.Config({
extensions: ["tex2jax.js","TeX/AMSmath.js"],
jax: ["input/TeX","output/HTML-CSS"],
tex2jax: {inlineMath: [['$','$']]},
displayAlign: "left"});
</script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js">
</script>
</head>
<body>
<div>
<h1>Automatický výpočet Hamiltonových rovnic z lagranžiánu v pythonu pomocí sympy - vyzkoušené příklady.
</h1>
<p>
Tento jednoduchý skript řeší poměrně otravný problém, který
je však snadno algoritmizovatelný. Jsou to jen opakované parciální derivace,
jejichž výsledky jsou dosazovány do daných výrazů. Protože se přitom člověk
snadno splete (hlavně ve znaménku), je lepší to nechat na programu.
Stačí nadefinovat potřebné symboly pro konstanty a časově závislé proměnné
(zobecněné souřadnice), pomocí nich pak vyjádřit lagranžián a o zbytek se postará python.
</p>
<div><hr>
<h2>Řešený problém : Railgun
</h2>
<h3>1.1. Zadaný lagranžián :
</h3>
<p class="formulaDsp">\[L = \frac{m \left(\dot{x}\right)^{2}}{2} + \frac{\mu \left(\dot{Q}\right)^{2}}{2} x - \frac{Q^{2}}{2 C}\]
</p>
<h3>1.2. Lagrangeovy rovnice :
</h3>
<p class="formulaDsp">\[\left [ m \ddot{x} - \frac{\mu \left(\dot{Q}\right)^{2}}{2} = 0, \quad \mu x \ddot{Q} + \mu \dot{Q} \dot{x} + \frac{Q}{C} = 0\right ]\]
</p>
<h3>1.3. Hamiltonova funkce :
</h3>
<p class="formulaDsp">\[H = \frac{p^{2}_{Q}}{2 \mu x} + \frac{p^{2}_{x}}{2 m} + \frac{Q^{2}}{2 C}\]
</p>
<h3>1.4. Hamiltonovy kanonické rovnice :
</h3>
<table align="center">
<tr>
<td class="formulaDsp">\[\dot{x}=\frac{p_{x}}{m}\qquad\]</td>
<td class="formulaDsp">\[\dot{p}_{x}=\frac{p^{2}_{Q}}{2 \mu x^{2}}\qquad\]</td>
</tr>
<tr>
<td class="formulaDsp">\[\dot{Q}=\frac{p_{Q}}{\mu x}\qquad\]</td>
<td class="formulaDsp">\[\dot{p}_{Q}=- \frac{Q}{C}\qquad\]</td>
</tr>
</table>
</div>
<div><hr>
<h2>Řešený problém : Pohyb planety
</h2>
<h3>2.1. Zadaný lagranžián :
</h3>
<p class="formulaDsp">\[L = \frac{G M}{r} m + \frac{m}{2} \left(r^{2} \left(\dot{\phi}\right)^{2} + \left(\dot{r}\right)^{2}\right)\]
</p>
<h3>2.2. Lagrangeovy rovnice :
</h3>
<p class="formulaDsp">\[\left [ \frac{G M}{r^{2}} - r \left(\dot{\phi}\right)^{2} + \ddot{r} = 0, \quad r^{2} \ddot{\phi} + 2 r \dot{\phi} \dot{r} = 0\right ]\]
</p>
<h3>2.3. Hamiltonova funkce :
</h3>
<p class="formulaDsp">\[H = - \frac{G M}{r} m + \frac{p^{2}_{\phi}}{2 m r^{2}} + \frac{p^{2}_{r}}{2 m}\]
</p>
<h3>2.4. Hamiltonovy kanonické rovnice :
</h3>
<table align="center">
<tr>
<td class="formulaDsp">\[\dot{r}=\frac{p_{r}}{m}\qquad\]</td>
<td class="formulaDsp">\[\dot{p}_{r}=- \frac{G M}{r^{2}} m + \frac{p^{2}_{\phi}}{m r^{3}}\qquad\]</td>
</tr>
<tr>
<td class="formulaDsp">\[\dot{\phi}=\frac{p_{\phi}}{m r^{2}}\qquad\]</td>
<td class="formulaDsp">\[\dot{p}_{\phi}=0\qquad\]</td>
</tr>
</table>
</div>
<div><hr>
<h2>Řešený problém : Harmonický oscilátor
</h2>
<h3>3.1. Zadaný lagranžián :
</h3>
<p class="formulaDsp">\[L = - \frac{m \omega^{2}}{2} x^{2} + \frac{m \left(\dot{x}\right)^{2}}{2}\]
</p>
<h3>3.2. Lagrangeovy rovnice :
</h3>
<p class="formulaDsp">\[\left [ \omega^{2} x + \ddot{x} = 0\right ]\]
</p>
<h3>3.3. Hamiltonova funkce :
</h3>
<p class="formulaDsp">\[H = \frac{m \omega^{2}}{2} x^{2} + \frac{p^{2}_{x}}{2 m}\]
</p>
<h3>3.4. Hamiltonovy kanonické rovnice :
</h3>
<table align="center">
<tr>
<td class="formulaDsp">\[\dot{x}=\frac{p_{x}}{m}\qquad\]</td>
<td class="formulaDsp">\[\dot{p}_{x}=- m \omega^{2} x\qquad\]</td>
</tr>
</table>
</div>
</div>
</body>
</html>

63
Hamilton/index.html Normal file
View file

@ -0,0 +1,63 @@
<!doctype html>
<html>
<head>
<meta charset="utf-8" http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>SOLVER</title>
<style>
tr, td { border-collapse: collapse; }
table { width:100%; border-collapse: collapse; text-align: center; }
.emscripten { padding-right: 0; margin-left: auto; margin-right: auto; display: block; }
textarea.emscripten { font-family: monospace; font-size: 16px; width: 100%; overflow-x: scroll; white-space: pre; background: black; color: rgb(0,255,0);}
.frame1 { width: 96%; margin: 0; padding: 10px; background-color: #FFFFC0; border: 10px solid #F0C0F0; }
.canvas { width: 100%; height: 65vh; background-color: black; }
.a {color:#800080;}
</style>
</head>
<body>
<script type="text/javascript" src="index.js"></script>
<div class="frame1"><canvas id="canvas" class="canvas"></canvas></div>
<div class="frame1"><input id="buttonTest" type="button" value="Submit"></div>
<div class="frame1">
<table><tr>
<td width="40%"><textarea class="emscripten" id="input" rows="25" spellcheck="false"></textarea></td>
<td><textarea readonly class="emscripten" id="stdout" rows="25" spellcheck="false"></textarea></td>
</tr></table>
</div>
<script type="text/x-mathjax-config">MathJax.Hub.Config({
extensions: ["tex2jax.js"],
jax: ["input/TeX","output/HTML-CSS"],
tex2jax: {inlineMath: [['$','$']]},
displayAlign: "left"});
</script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js"></script>
<div class="frame1">
<h2>Solver pro soustavu Hamiltonových rovnic.</h2>
<p>Nebudu se tady zabývat tím, co to jsou Hamiltonovy rovnice, na to je teoretická mechanika.
Pro tento účel je to soustava diferenciálních rovnic, převedených do tvaru
$$ \dot q_1 = f_1 (q_1, p_1, ..., q_i, p_i) $$
$$ ... $$
$$ \dot q_i = f_i (q_1, p_1, ..., q_i, p_i) $$
$$ \dot p_1 = g_1 (q_1, p_1, ..., q_i, p_i) $$
$$ ... $$
$$ \dot p_i = g_i (q_1, p_1, ..., q_i, p_i) $$
kde $ \dot q_i, \dot p_i $ jsou derivace zobecněných souřadnic a hybností podle času. Celkově
je to tedy sudý počet rovnic 2*i. Tyto rovnice zapíšeme jednoduše ve správném pořadí a se správným
pořadím proměnných ve tvaru, který používá javascript, stanovíme 2*i počátečních podmínek a stanovíme
co se má vykreslit. Osy to nemá, každý graf jde od minima do maxima, je to jen pro představu, jak funkce
vypadá. Objekt, vstupující do rovnic má tvar {t:t, w:[q1, q2 ... qn, p1, p2, ... pn]}, t značí čas.
Default příklad je harmonický oscilátor, lze použít i
<a class="a" onclick="getFile('nvcr.txt');">nelineární oscilátor</a> nebo pro příklad
<a class="a" onclick="getFile('lorenz.txt');">Lorenzův atraktor</a> a nakonec
<a class="a" onclick="getFile('railgun.txt');">railgun</a> s disipací energie.
Stačí kliknout na zvýrazněný text
a stisknout tlačítko Submit. Parametry simulace lze jednoduše měnit. Připadá mi to o hodně jednodušší
popsat takto problém textem než vymýšlet celé IDE s mnoha parametry. Parametry funkce solve (krok, počet_kroků, počáteční_podmínky, seznam_funkcí),
plot (výsledek_ze_solve, popis_os, barva). Objekt popis_os má tvar {x:[list], y:[list]}, přičemž list je buď 't' nebo 'w', číslo_proměnné.
</p>
<p>Vlastní solver používá metodu Runge-Kutta 4.řádu, je poměrně přesná a není to o moc složitější
než prostý Euler. Pokud hledáte ty Hamiltonovy rovnice, pomůže tento <a href="lagrange.html" target="_blank">skript</a>,
jeho výstup je pak zhruba <a href="equations.html" target="_blank">tento</a>.
</p>
</div>
</body>
</html>

126
Hamilton/index.js Normal file
View file

@ -0,0 +1,126 @@
var Outs, Inps, Btnt, Canvas;
// async/await z příkladu na webu
window.onload = async function() {
Outs = document.getElementById('stdout');
Inps = document.getElementById('input');
Btnt = document.getElementById('buttonTest');
Canvas = document.getElementById('canvas');
Outs.value = '';
await getFile ('osc.txt');
Btnt.onclick = () => {
Outs.value = '';
run ();
};
};
function print (str) {
Outs.value += str;
}
async function getFile (name) {
console.log(name);
const response = await fetch (name);
if (!response.ok) return;
const bytes = await response.arrayBuffer();
const array = new Uint8Array(bytes);
const decoder = new TextDecoder();
Inps.value = decoder.decode(bytes);
return false;
}
///////////////////////////////////////////////
function run () {
let code = Inps.value;
try {
eval (code);
} catch (err) {
print('Error: ' + err.message + '\n');
}
}
function solve (hh, steps, data, pf) {
let p = data;
const N = pf.length;
const hal = 0.5 * hh;
const hhs = hh / 6.0;
let min = {t:+1.0e100, w:[]};
for (let k=0; k<N; k++) { min.w[k] = min.t; }
let max = {t:-1.0e100, w:[]};
for (let k=0; k<N; k++) { max.w[k] = max.t; }
let result = new Array(steps + 1);
if (p.t < min.t) min.t = p.t;
for (let k=0; k<N; k++) { if (p.w[k] < min.w[k]) min.w[k] = p.w[k]; }
if (p.t > max.t) max.t = p.t;
for (let k=0; k<N; k++) { if (p.w[k] > max.w[k]) max.w[k] = p.w[k]; }
result [0] = new Object (structuredClone(p));
for (let index=1; index<result.length; index++) {
let k1 = [];
for (let k=0; k<N; k++) { k1[k] = pf[k] (p); }
let p2 = structuredClone(p); p2.t += hal;
for (let k=0; k<N; k++) { p2.w[k] += hal * k1[k]; }
let k2 = [];
for (let k=0; k<N; k++) { k2[k] = pf[k](p2); }
let p3 = structuredClone(p); p3.t += hal;
for (let k=0; k<N; k++) { p3.w[k] += hal * k2[k]; }
let k3 = [];
for (let k=0; k<N; k++) { k3[k] = pf[k](p3); }
let p4 = structuredClone(p); p4.t += hh;
for (let k=0; k<N; k++) { p4.w[k] += hh * k3[k]; }
let k4 = [];
for (let k=0; k<N; k++) { k4[k] = pf[k](p4); }
p.t += hh;
for (let k=0; k<N; k++) { p.w[k] += hhs * (k1[k] + 2.0 * k2[k] + 2.0 * k3[k] + k4[k]); }
let np = structuredClone (p);
if (np.t < min.t) min.t = np.t;
for (let k=0; k<N; k++) { if (np.w[k] < min.w[k]) min.w[k] = np.w[k]; }
if (np.t > max.t) max.t = np.t;
for (let k=0; k<N; k++) { if (np.w[k] > max.w[k]) max.w[k] = np.w[k]; }
result [index] = new Object (np);
}
initCanvas ()
return {data:result, m:min, p:max};
}
function getValue (pt, si) {
if (si.length > 1) { // w
return pt[si[0]][si[1]];
} else { // t
return pt[si[0]];
}
}
function initCanvas () {
const width = canvas.clientWidth;
const height = canvas.clientHeight;
canvas.width = width;
canvas.height = height;
const ctx = canvas.getContext("2d");
ctx.clearRect(0, 0, canvas.width, canvas.height);
}
function plot (r, po, color) {
print('plot:' + JSON.stringify(po) + '\n');
const p0 = r.data[0];
print('min: ' + JSON.stringify(r.m) + '\n');
print('max: ' + JSON.stringify(r.p) + '\n');
const xmin = getValue (r.m, po.x);
const xmax = getValue (r.p, po.x);
const ymin = getValue (r.m, po.y);
const ymax = getValue (r.p, po.y);
const xzom = canvas.width / (xmax - xmin);
const yzom = canvas.height / (ymin - ymax);
const xofs = xmin * canvas.width / (xmin - xmax);
const yofs = ymax * canvas.height / (ymax - ymin);
//console.log (xmin, xmax, ymin, ymax);
const ctx = canvas.getContext("2d");
ctx.beginPath();
const x0 = xzom * getValue(p0, po.x) + xofs;
const y0 = yzom * getValue(p0, po.y) + yofs;
ctx.moveTo(x0, y0);
for (let n=1; n<r.data.length; n++) {
const p = r.data[n];
const x = xzom * getValue(p, po.x) + xofs;
const y = yzom * getValue(p, po.y) + yofs;
ctx.lineTo(x, y);
}
ctx.lineWidth = 3;
ctx.strokeStyle = color;
ctx.stroke();
}

538
Hamilton/lagrange.html Normal file
View file

@ -0,0 +1,538 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title></title>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<style type="text/css">
td.linenos { background-color: #f0f0f0; padding-right: 10px; }
span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }
pre { line-height: 125%; }
body .hll { background-color: #ffffcc }
body { background: #f8f8f8; }
body .c { color: #408080; font-style: italic } /* Comment */
body .err { border: 1px solid #FF0000 } /* Error */
body .k { color: #008000; font-weight: bold } /* Keyword */
body .o { color: #666666 } /* Operator */
body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */
body .cm { color: #408080; font-style: italic } /* Comment.Multiline */
body .cp { color: #BC7A00 } /* Comment.Preproc */
body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */
body .c1 { color: #408080; font-style: italic } /* Comment.Single */
body .cs { color: #408080; font-style: italic } /* Comment.Special */
body .gd { color: #A00000 } /* Generic.Deleted */
body .ge { font-style: italic } /* Generic.Emph */
body .gr { color: #FF0000 } /* Generic.Error */
body .gh { color: #000080; font-weight: bold } /* Generic.Heading */
body .gi { color: #00A000 } /* Generic.Inserted */
body .go { color: #888888 } /* Generic.Output */
body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
body .gs { font-weight: bold } /* Generic.Strong */
body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
body .gt { color: #0044DD } /* Generic.Traceback */
body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
body .kp { color: #008000 } /* Keyword.Pseudo */
body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
body .kt { color: #B00040 } /* Keyword.Type */
body .m { color: #666666 } /* Literal.Number */
body .s { color: #BA2121 } /* Literal.String */
body .na { color: #7D9029 } /* Name.Attribute */
body .nb { color: #008000 } /* Name.Builtin */
body .nc { color: #0000FF; font-weight: bold } /* Name.Class */
body .no { color: #880000 } /* Name.Constant */
body .nd { color: #AA22FF } /* Name.Decorator */
body .ni { color: #999999; font-weight: bold } /* Name.Entity */
body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
body .nf { color: #0000FF } /* Name.Function */
body .nl { color: #A0A000 } /* Name.Label */
body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
body .nt { color: #008000; font-weight: bold } /* Name.Tag */
body .nv { color: #19177C } /* Name.Variable */
body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
body .w { color: #bbbbbb } /* Text.Whitespace */
body .mb { color: #666666 } /* Literal.Number.Bin */
body .mf { color: #666666 } /* Literal.Number.Float */
body .mh { color: #666666 } /* Literal.Number.Hex */
body .mi { color: #666666 } /* Literal.Number.Integer */
body .mo { color: #666666 } /* Literal.Number.Oct */
body .sb { color: #BA2121 } /* Literal.String.Backtick */
body .sc { color: #BA2121 } /* Literal.String.Char */
body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
body .s2 { color: #BA2121 } /* Literal.String.Double */
body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
body .sh { color: #BA2121 } /* Literal.String.Heredoc */
body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
body .sx { color: #008000 } /* Literal.String.Other */
body .sr { color: #BB6688 } /* Literal.String.Regex */
body .s1 { color: #BA2121 } /* Literal.String.Single */
body .ss { color: #19177C } /* Literal.String.Symbol */
body .bp { color: #008000 } /* Name.Builtin.Pseudo */
body .vc { color: #19177C } /* Name.Variable.Class */
body .vg { color: #19177C } /* Name.Variable.Global */
body .vi { color: #19177C } /* Name.Variable.Instance */
body .il { color: #666666 } /* Literal.Number.Integer.Long */
</style>
</head>
<body>
<h2></h2>
<table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227</pre></div></td><td class="code"><div class="highlight"><pre><span class="ch">#!/usr/bin/env python</span>
<span class="c1"># -*- coding: utf-8 -*-</span>
<span class="n">description</span> <span class="o">=</span> <span class="s2">&quot;&quot;&quot;</span>
<span class="s2">Tento jednoduchý skript řeší poměrně otravný problém, který</span>
<span class="s2">je však snadno algoritmizovatelný. Jsou to jen opakované parciální derivace,</span>
<span class="s2">jejichž výsledky jsou dosazovány do daných výrazů. Protože se přitom člověk</span>
<span class="s2">snadno splete (hlavně ve znaménku), je lepší to nechat na programu.</span>
<span class="s2">Stačí nadefinovat potřebné symboly pro konstanty a časově závislé proměnné</span>
<span class="s2">(zobecněné souřadnice), pomocí nich pak vyjádřit lagranžián a o zbytek se postará python.</span>
<span class="s2">&quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">sympy.core</span> <span class="kn">import</span> <span class="n">mul</span><span class="p">,</span> <span class="n">add</span>
<span class="kn">from</span> <span class="nn">sympy.physics.vector.printing</span> <span class="kn">import</span> <span class="n">vlatex</span>
<span class="kn">from</span> <span class="nn">sympy.physics.mechanics</span> <span class="kn">import</span> <span class="n">dynamicsymbols</span>
<span class="kn">from</span> <span class="nn">sympy</span> <span class="kn">import</span> <span class="p">(</span><span class="n">Symbol</span><span class="p">,</span> <span class="n">symbols</span><span class="p">,</span> <span class="n">Derivative</span><span class="p">,</span>
<span class="n">Eq</span><span class="p">,</span> <span class="n">pprint</span><span class="p">,</span> <span class="n">solve</span><span class="p">,</span> <span class="n">latex</span><span class="p">,</span> <span class="n">simplify</span><span class="p">,</span> <span class="n">expand</span><span class="p">)</span>
<span class="c1">################# HTML dekorace ###############################################</span>
<span class="k">class</span> <span class="nc">Tag</span><span class="p">:</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">v</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="n">n</span>
<span class="bp">self</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">v</span>
<span class="k">def</span> <span class="nf">to_str</span> <span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s1">&#39; &#39;</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">+</span> <span class="s1">&#39;=</span><span class="se">\&quot;</span><span class="s1">&#39;</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">value</span> <span class="o">+</span> <span class="s1">&#39;</span><span class="se">\&quot;</span><span class="s1">&#39;</span>
<span class="k">class</span> <span class="nc">Element</span><span class="p">:</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">v</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="n">n</span>
<span class="bp">self</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">v</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tags</span> <span class="o">=</span> <span class="p">[]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">childs</span> <span class="o">=</span> <span class="p">[]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">id</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">def</span> <span class="nf">addE</span> <span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">e</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">childs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">e</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">addT</span> <span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">t</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tags</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">t</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">addF</span> <span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">f</span><span class="p">):</span>
<span class="n">t</span> <span class="o">=</span> <span class="n">Tag</span> <span class="p">(</span><span class="s1">&#39;class&#39;</span><span class="p">,</span><span class="s1">&#39;formulaDsp&#39;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">f</span><span class="p">:</span>
<span class="n">n</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;p&#39;</span><span class="p">,</span> <span class="s1">&#39;</span><span class="se">\\</span><span class="s1">[&#39;</span> <span class="o">+</span> <span class="n">p</span> <span class="o">+</span> <span class="s1">&#39;</span><span class="se">\\</span><span class="s1">]&#39;</span><span class="p">)</span>
<span class="n">n</span><span class="o">.</span><span class="n">addT</span><span class="p">(</span><span class="n">t</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">n</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">to_str</span> <span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">indent</span><span class="p">()</span>
<span class="n">s</span><span class="o">+=</span> <span class="s1">&#39;&lt;&#39;</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span>
<span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">tags</span><span class="p">:</span> <span class="n">s</span> <span class="o">+=</span> <span class="n">n</span><span class="o">.</span><span class="n">to_str</span><span class="p">()</span>
<span class="n">s</span><span class="o">+=</span> <span class="s1">&#39;&gt;&#39;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">value</span> <span class="o">!=</span> <span class="bp">None</span><span class="p">:</span> <span class="n">s</span> <span class="o">+=</span> <span class="bp">self</span><span class="o">.</span><span class="n">value</span>
<span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">childs</span><span class="p">:</span> <span class="n">s</span> <span class="o">+=</span> <span class="n">n</span><span class="o">.</span><span class="n">to_str</span><span class="p">()</span>
<span class="n">s</span><span class="o">+=</span> <span class="bp">self</span><span class="o">.</span><span class="n">indent</span><span class="p">()</span>
<span class="n">s</span><span class="o">+=</span> <span class="s1">&#39;&lt;/&#39;</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">+</span> <span class="s1">&#39;&gt;&#39;</span>
<span class="k">return</span> <span class="n">s</span>
<span class="k">def</span> <span class="nf">cal</span> <span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">id</span> <span class="o">=</span> <span class="n">k</span>
<span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">childs</span><span class="p">:</span> <span class="n">n</span><span class="o">.</span><span class="n">cal</span> <span class="p">(</span><span class="n">k</span><span class="o">+</span><span class="mi">2</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">indent</span> <span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">id</span> <span class="o">*</span> <span class="s1">&#39; &#39;</span>
<span class="k">return</span> <span class="n">s</span>
<span class="k">def</span> <span class="nf">set_root</span> <span class="p">(</span><span class="n">e</span><span class="p">,</span> <span class="n">root</span><span class="p">):</span>
<span class="n">styl</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;style&#39;</span><span class="p">,</span> <span class="s1">&#39;body {background-color: rgb(192,255,255);} h2 {color: rgb(64,0,192);} h3 {color: rgb(192,0,0);} table {color: rgb(128,0,128);}&#39;</span><span class="p">)</span>
<span class="n">scfg</span> <span class="o">=</span> <span class="s1">&#39;MathJax.Hub.Config({</span><span class="se">\n</span><span class="s1"> extensions: [</span><span class="se">\&quot;</span><span class="s1">tex2jax.js</span><span class="se">\&quot;</span><span class="s1">,&quot;TeX/AMSmath.js&quot;],</span><span class="se">\n</span><span class="s1"> jax: [</span><span class="se">\&quot;</span><span class="s1">input/TeX</span><span class="se">\&quot;</span><span class="s1">,&#39;</span>
<span class="n">scfg</span><span class="o">+=</span> <span class="s1">&#39;</span><span class="se">\&quot;</span><span class="s1">output/HTML-CSS</span><span class="se">\&quot;</span><span class="s1">],</span><span class="se">\n</span><span class="s1"> tex2jax: {inlineMath: [[</span><span class="se">\&#39;</span><span class="s1">$</span><span class="se">\&#39;</span><span class="s1">,</span><span class="se">\&#39;</span><span class="s1">$</span><span class="se">\&#39;</span><span class="s1">]]},</span><span class="se">\n</span><span class="s1"> displayAlign: </span><span class="se">\&quot;</span><span class="s1">left</span><span class="se">\&quot;</span><span class="s1">});&#39;</span>
<span class="n">head</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;head&#39;</span><span class="p">)</span>
<span class="n">meta</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;META&#39;</span><span class="p">)</span>
<span class="n">titl</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;title&#39;</span><span class="p">,</span> <span class="s1">&#39;Lagrange&#39;</span><span class="p">)</span>
<span class="n">s1</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;script&#39;</span><span class="p">,</span> <span class="n">scfg</span><span class="p">)</span>
<span class="n">s2</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;script&#39;</span><span class="p">)</span>
<span class="n">s1</span><span class="o">.</span><span class="n">addT</span><span class="p">(</span><span class="n">Tag</span><span class="p">(</span><span class="s1">&#39;type&#39;</span><span class="p">,</span><span class="s1">&#39;text/x-mathjax-config&#39;</span><span class="p">))</span>
<span class="n">s2</span><span class="o">.</span><span class="n">addT</span><span class="p">(</span><span class="n">Tag</span><span class="p">(</span><span class="s1">&#39;type&#39;</span><span class="p">,</span><span class="s1">&#39;text/javascript&#39;</span><span class="p">))</span>
<span class="n">s2</span><span class="o">.</span><span class="n">addT</span><span class="p">(</span><span class="n">Tag</span><span class="p">(</span><span class="s1">&#39;src&#39;</span><span class="p">,</span><span class="s1">&#39;https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js&#39;</span><span class="p">))</span>
<span class="n">meta</span><span class="o">.</span><span class="n">addT</span><span class="p">(</span><span class="n">Tag</span><span class="p">(</span><span class="s1">&#39;HTTP-EQUIV&#39;</span><span class="p">,</span><span class="s1">&#39;CONTENT-TYPE&#39;</span><span class="p">))</span>
<span class="n">meta</span><span class="o">.</span><span class="n">addT</span><span class="p">(</span><span class="n">Tag</span><span class="p">(</span><span class="s1">&#39;CONTENT&#39;</span><span class="p">,</span><span class="s1">&#39;text/html; charset=utf-8&#39;</span><span class="p">))</span>
<span class="n">head</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">meta</span><span class="p">)</span>
<span class="n">head</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">titl</span><span class="p">)</span>
<span class="n">head</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">styl</span><span class="p">)</span>
<span class="n">head</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">s1</span><span class="p">)</span>
<span class="n">head</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">s2</span><span class="p">)</span>
<span class="n">e</span><span class="o">.</span><span class="n">addE</span> <span class="p">(</span><span class="n">head</span><span class="p">)</span>
<span class="n">body</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;body&#39;</span><span class="p">)</span>
<span class="n">body</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">root</span><span class="p">)</span>
<span class="n">e</span><span class="o">.</span><span class="n">addE</span> <span class="p">(</span><span class="n">body</span><span class="p">)</span>
<span class="n">e</span><span class="o">.</span><span class="n">cal</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">html_head</span> <span class="p">():</span>
<span class="n">s</span> <span class="o">=</span> <span class="s1">&#39;&lt;!DOCTYPE html PUBLIC </span><span class="se">\&quot;</span><span class="s1">-//W3C//DTD XHTML 1.0 Transitional//EN</span><span class="se">\&quot;</span><span class="s1"> </span><span class="se">\&quot;</span><span class="s1">http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd</span><span class="se">\&quot;</span><span class="s1">&gt;&#39;</span>
<span class="k">return</span> <span class="n">s</span>
<span class="k">def</span> <span class="nf">CreateHTML</span> <span class="p">(</span><span class="n">filename</span><span class="p">,</span> <span class="n">html</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">html_head</span> <span class="p">()</span>
<span class="n">r</span> <span class="o">=</span> <span class="n">Element</span> <span class="p">(</span><span class="s1">&#39;html&#39;</span><span class="p">)</span>
<span class="n">set_root</span> <span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">html</span><span class="p">)</span>
<span class="n">s</span> <span class="o">+=</span> <span class="n">r</span><span class="o">.</span><span class="n">to_str</span><span class="p">()</span>
<span class="nb">file</span> <span class="o">=</span> <span class="nb">open</span> <span class="p">(</span><span class="n">filename</span><span class="p">,</span><span class="s1">&#39;w&#39;</span><span class="p">)</span>
<span class="nb">file</span><span class="o">.</span><span class="n">write</span><span class="p">(</span><span class="n">s</span><span class="p">)</span>
<span class="nb">file</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">output</span> <span class="p">(</span><span class="n">counter</span><span class="p">,</span> <span class="n">problem</span><span class="p">,</span> <span class="n">L</span><span class="p">,</span> <span class="n">H</span><span class="p">,</span> <span class="n">hce</span><span class="p">,</span> <span class="n">lce</span><span class="p">):</span>
<span class="n">html</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;div&#39;</span><span class="p">,</span> <span class="s1">&#39;&lt;hr&gt;&#39;</span><span class="p">)</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">Element</span><span class="p">(</span><span class="s1">&#39;h2&#39;</span><span class="p">,</span><span class="s1">&#39;Řešený problém : {0:s}&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">problem</span><span class="p">)))</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">Element</span><span class="p">(</span><span class="s1">&#39;h3&#39;</span><span class="p">,</span><span class="s1">&#39;{0:d}.1. Zadaný lagranžián :&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">counter</span><span class="p">)))</span>
<span class="n">html</span><span class="o">.</span><span class="n">addF</span> <span class="p">([</span><span class="s1">&#39;L = &#39;</span> <span class="o">+</span> <span class="n">vlatex</span><span class="p">(</span><span class="n">L</span><span class="p">)]);</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">Element</span><span class="p">(</span><span class="s1">&#39;h3&#39;</span><span class="p">,</span><span class="s1">&#39;{0:d}.2. Lagrangeovy rovnice :&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">counter</span><span class="p">)))</span>
<span class="n">html</span><span class="o">.</span><span class="n">addF</span> <span class="p">([</span><span class="n">vlatex</span><span class="p">(</span><span class="n">lce</span><span class="p">)]);</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">Element</span><span class="p">(</span><span class="s1">&#39;h3&#39;</span><span class="p">,</span><span class="s1">&#39;{0:d}.3. Hamiltonova funkce :&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">counter</span><span class="p">)))</span>
<span class="n">html</span><span class="o">.</span><span class="n">addF</span> <span class="p">([</span><span class="s1">&#39;H = &#39;</span> <span class="o">+</span> <span class="n">vlatex</span><span class="p">(</span><span class="n">H</span><span class="p">)]);</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">Element</span><span class="p">(</span><span class="s1">&#39;h3&#39;</span><span class="p">,</span><span class="s1">&#39;{0:d}.4. Hamiltonovy kanonické rovnice :&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">counter</span><span class="p">)))</span>
<span class="n">table</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;table&#39;</span><span class="p">)</span>
<span class="n">table</span><span class="o">.</span><span class="n">addT</span><span class="p">(</span><span class="n">Tag</span><span class="p">(</span><span class="s1">&#39;align&#39;</span><span class="p">,</span><span class="s1">&#39;center&#39;</span><span class="p">))</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">hce</span><span class="p">:</span>
<span class="n">td</span> <span class="o">=</span> <span class="s1">&#39;&#39;</span>
<span class="k">for</span> <span class="n">q</span> <span class="ow">in</span> <span class="n">p</span><span class="p">:</span> <span class="n">td</span> <span class="o">+=</span> <span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&lt;td class=&quot;formulaDsp&quot;&gt;</span><span class="se">\\</span><span class="s1">[{0:s}={1:s}\qquad</span><span class="se">\\</span><span class="s1">]&lt;/td&gt;&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">vlatex</span><span class="p">(</span><span class="n">q</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="n">vlatex</span><span class="p">(</span><span class="n">expand</span><span class="p">(</span><span class="n">q</span><span class="p">[</span><span class="mi">1</span><span class="p">])))</span>
<span class="n">tr</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;tr&#39;</span><span class="p">,</span> <span class="n">td</span><span class="p">)</span>
<span class="n">table</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">tr</span><span class="p">)</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">table</span><span class="p">)</span>
<span class="k">return</span> <span class="n">html</span>
<span class="c1">#################### Vlastní výpočty ##########################################</span>
<span class="n">t</span> <span class="o">=</span> <span class="n">Symbol</span><span class="p">(</span><span class="s1">&#39;t&#39;</span><span class="p">)</span> <span class="c1"># Globální symbol pro čas</span>
<span class="c1"># vykrácení konstantou uděláme ručně, ale nemusí to fungovat, v podstatě jde jen o zbytečné hmotnosti</span>
<span class="k">def</span> <span class="nf">parse</span> <span class="p">(</span><span class="n">ex</span><span class="p">):</span>
<span class="n">ex</span> <span class="o">=</span> <span class="n">expand</span> <span class="p">(</span><span class="n">ex</span><span class="p">)</span>
<span class="k">if</span> <span class="n">ex</span><span class="o">.</span><span class="n">func</span> <span class="o">!=</span> <span class="n">add</span><span class="o">.</span><span class="n">Add</span><span class="p">:</span> <span class="k">return</span> <span class="n">ex</span>
<span class="n">e1</span> <span class="o">=</span> <span class="n">ex</span><span class="o">.</span><span class="n">args</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">if</span> <span class="n">e1</span><span class="o">.</span><span class="n">func</span> <span class="o">!=</span> <span class="n">mul</span><span class="o">.</span><span class="n">Mul</span><span class="p">:</span> <span class="k">return</span> <span class="n">ex</span>
<span class="n">p</span> <span class="o">=</span> <span class="n">e1</span><span class="o">.</span><span class="n">args</span>
<span class="n">x</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">b</span> <span class="ow">in</span> <span class="n">p</span><span class="p">:</span> <span class="n">x</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">ex</span><span class="o">.</span><span class="n">args</span><span class="p">:</span>
<span class="k">if</span> <span class="n">e</span><span class="o">.</span><span class="n">func</span> <span class="o">!=</span> <span class="n">mul</span><span class="o">.</span><span class="n">Mul</span><span class="p">:</span> <span class="k">break</span>
<span class="k">for</span> <span class="n">a</span> <span class="ow">in</span> <span class="n">e</span><span class="o">.</span><span class="n">args</span><span class="p">:</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">b</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">p</span><span class="p">):</span>
<span class="k">if</span> <span class="n">a</span> <span class="o">==</span> <span class="n">b</span><span class="p">:</span> <span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">+=</span> <span class="mi">1</span> <span class="c1"># TODO: or plus power of expression</span>
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span> <span class="p">(</span><span class="n">ex</span><span class="o">.</span><span class="n">args</span><span class="p">)</span>
<span class="n">z</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">y</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="k">if</span> <span class="n">y</span> <span class="o">==</span> <span class="n">l</span><span class="p">:</span> <span class="n">z</span><span class="o">.</span><span class="n">append</span> <span class="p">(</span><span class="n">p</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
<span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">z</span><span class="p">:</span> <span class="n">ex</span> <span class="o">=</span> <span class="n">ex</span> <span class="o">/</span> <span class="n">e</span>
<span class="n">ex</span> <span class="o">=</span> <span class="n">simplify</span> <span class="p">(</span><span class="n">ex</span><span class="p">)</span>
<span class="n">ex</span> <span class="o">=</span> <span class="n">expand</span> <span class="p">(</span><span class="n">ex</span><span class="p">)</span>
<span class="k">return</span> <span class="n">ex</span>
<span class="k">def</span> <span class="nf">lagrange</span> <span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="n">coord</span><span class="p">):</span>
<span class="n">lce</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">coord</span><span class="p">:</span>
<span class="n">ex</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">)</span> <span class="o">-</span> <span class="n">L</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">c</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="c1"># výraz pro Lagrangeovu rovnici</span>
<span class="n">ex</span> <span class="o">=</span> <span class="n">parse</span> <span class="p">(</span><span class="n">ex</span><span class="p">)</span> <span class="c1"># vykrátit případné konstanty (lze i ručně)</span>
<span class="n">le</span> <span class="o">=</span> <span class="n">Eq</span> <span class="p">(</span><span class="n">ex</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> <span class="c1"># a udělat z toho rovnici</span>
<span class="n">lce</span><span class="o">.</span><span class="n">append</span> <span class="p">(</span><span class="n">le</span><span class="p">)</span>
<span class="n">pprint</span><span class="p">(</span><span class="n">lce</span><span class="p">)</span>
<span class="k">return</span> <span class="n">lce</span>
<span class="k">def</span> <span class="nf">compute</span> <span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">Counter</span><span class="p">):</span>
<span class="n">res</span> <span class="o">=</span> <span class="nb">input</span><span class="p">()</span>
<span class="n">coord__x</span> <span class="o">=</span> <span class="n">res</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">coord__p</span> <span class="o">=</span> <span class="n">res</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="n">L</span> <span class="o">=</span> <span class="n">res</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
<span class="n">pprint</span> <span class="p">(</span><span class="n">L</span><span class="p">)</span> <span class="c1"># Pro kontrolu</span>
<span class="n">coord_dp</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">coord__p</span><span class="p">:</span> <span class="n">coord_dp</span><span class="o">.</span><span class="n">append</span> <span class="p">(</span><span class="n">p</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">))</span>
<span class="n">coord_dx</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">coord__x</span><span class="p">:</span> <span class="n">coord_dx</span><span class="o">.</span><span class="n">append</span> <span class="p">(</span><span class="n">p</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">))</span>
<span class="n">lce</span> <span class="o">=</span> <span class="n">lagrange</span> <span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="nb">zip</span><span class="p">(</span><span class="n">coord__x</span><span class="p">,</span> <span class="n">coord_dx</span><span class="p">))</span>
<span class="n">E</span> <span class="o">=</span> <span class="o">-</span><span class="n">L</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">coord_dx</span><span class="p">:</span> <span class="n">E</span> <span class="o">+=</span> <span class="n">L</span><span class="o">.</span><span class="n">diff</span> <span class="p">(</span><span class="n">p</span><span class="p">)</span> <span class="o">*</span> <span class="n">p</span>
<span class="n">E</span> <span class="o">=</span> <span class="n">simplify</span> <span class="p">(</span><span class="n">E</span><span class="p">)</span>
<span class="c1">#pprint (E) # Energie</span>
<span class="n">coord_ps</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">coord_dx</span><span class="p">:</span> <span class="n">coord_ps</span><span class="o">.</span><span class="n">append</span> <span class="p">(</span><span class="n">L</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">p</span><span class="p">))</span>
<span class="n">coord__h</span> <span class="o">=</span> <span class="nb">zip</span> <span class="p">(</span><span class="n">coord__p</span><span class="p">,</span> <span class="n">coord_ps</span><span class="p">)</span>
<span class="n">eqs</span> <span class="o">=</span> <span class="p">[]</span> <span class="c1"># Legendreova duální transformace</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">coord__h</span><span class="p">:</span> <span class="n">eqs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">Eq</span><span class="p">(</span><span class="n">p</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">p</span><span class="p">[</span><span class="mi">1</span><span class="p">]))</span>
<span class="n">sol</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">p</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">eqs</span><span class="p">):</span> <span class="n">sol</span><span class="o">.</span><span class="n">append</span> <span class="p">(</span><span class="n">solve</span> <span class="p">([</span><span class="n">p</span><span class="p">],</span> <span class="p">[</span><span class="n">coord_dx</span><span class="p">[</span><span class="n">i</span><span class="p">]]))</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">p</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">sol</span><span class="p">):</span> <span class="n">E</span> <span class="o">=</span> <span class="n">E</span><span class="o">.</span><span class="n">subs</span> <span class="p">(</span><span class="n">coord_dx</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">p</span><span class="p">[</span><span class="n">coord_dx</span><span class="p">[</span><span class="n">i</span><span class="p">]])</span>
<span class="n">H</span> <span class="o">=</span> <span class="n">simplify</span> <span class="p">(</span><span class="n">E</span><span class="p">)</span>
<span class="n">H</span> <span class="o">=</span> <span class="n">expand</span> <span class="p">(</span><span class="n">H</span><span class="p">)</span> <span class="c1"># O něco čitelněji</span>
<span class="n">pprint</span> <span class="p">(</span><span class="n">H</span><span class="p">)</span> <span class="c1"># Hamiltonova funkce</span>
<span class="n">hce</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">p</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">coord__x</span><span class="p">):</span>
<span class="n">eqx</span> <span class="o">=</span> <span class="n">Eq</span> <span class="p">(</span><span class="o">+</span><span class="n">H</span><span class="o">.</span><span class="n">diff</span> <span class="p">(</span><span class="n">coord__p</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="o">-</span> <span class="n">coord_dx</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">eqx</span> <span class="o">=</span> <span class="n">solve</span> <span class="p">([</span><span class="n">eqx</span><span class="p">],[</span><span class="n">coord_dx</span><span class="p">[</span><span class="n">i</span><span class="p">]])</span>
<span class="n">eqx</span> <span class="o">=</span> <span class="p">[</span><span class="n">coord_dx</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">eqx</span><span class="p">[</span><span class="n">coord_dx</span><span class="p">[</span><span class="n">i</span><span class="p">]]]</span>
<span class="n">eqp</span> <span class="o">=</span> <span class="n">Eq</span> <span class="p">(</span><span class="o">-</span><span class="n">H</span><span class="o">.</span><span class="n">diff</span> <span class="p">(</span><span class="n">coord__x</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="o">-</span> <span class="n">coord_dp</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">eqp</span> <span class="o">=</span> <span class="n">solve</span> <span class="p">([</span><span class="n">eqp</span><span class="p">],[</span><span class="n">coord_dp</span><span class="p">[</span><span class="n">i</span><span class="p">]])</span>
<span class="n">eqp</span> <span class="o">=</span> <span class="p">[</span><span class="n">coord_dp</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">eqp</span><span class="p">[</span><span class="n">coord_dp</span><span class="p">[</span><span class="n">i</span><span class="p">]]]</span>
<span class="n">hce</span><span class="o">.</span><span class="n">append</span><span class="p">([</span><span class="n">eqx</span><span class="p">,</span> <span class="n">eqp</span><span class="p">])</span>
<span class="n">pprint</span> <span class="p">(</span><span class="n">hce</span><span class="p">)</span> <span class="c1"># Hamiltonovy kanonické rovnice</span>
<span class="k">return</span> <span class="n">output</span> <span class="p">(</span><span class="n">Counter</span><span class="p">,</span> <span class="n">res</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">L</span><span class="p">,</span> <span class="n">H</span><span class="p">,</span> <span class="n">hce</span><span class="p">,</span> <span class="n">lce</span><span class="p">)</span>
<span class="c1">######################## Uživatelská část #####################################</span>
<span class="k">def</span> <span class="nf">entry1</span> <span class="p">():</span>
<span class="c1">##### Zadání #####</span>
<span class="n">m</span><span class="p">,</span><span class="n">mu</span><span class="p">,</span><span class="n">C</span> <span class="o">=</span> <span class="n">symbols</span> <span class="p">(</span><span class="s1">&#39;m mu C&#39;</span><span class="p">)</span> <span class="c1"># konstanty</span>
<span class="n">x</span><span class="p">,</span> <span class="n">Q</span> <span class="o">=</span> <span class="n">dynamicsymbols</span> <span class="p">(</span><span class="s1">&#39;x Q&#39;</span><span class="p">)</span> <span class="c1"># proměnné (zobecněné souřadnice)</span>
<span class="n">px</span><span class="p">,</span><span class="n">pQ</span> <span class="o">=</span> <span class="n">dynamicsymbols</span> <span class="p">(</span><span class="s1">&#39;p_x p_Q&#39;</span><span class="p">)</span> <span class="c1"># symboly pro příslušné zobecněné hybnosti</span>
<span class="c1"># Lagranžián</span>
<span class="n">L</span> <span class="o">=</span> <span class="p">(</span><span class="n">m</span> <span class="o">*</span> <span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">))</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="p">(</span><span class="n">mu</span> <span class="o">*</span> <span class="n">x</span> <span class="o">*</span> <span class="p">(</span><span class="n">Q</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">))</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span> <span class="o">-</span> <span class="p">(</span><span class="n">Q</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">C</span><span class="p">)</span>
<span class="c1">#############################################################################</span>
<span class="k">return</span> <span class="p">[[</span><span class="n">x</span><span class="p">,</span> <span class="n">Q</span><span class="p">],</span> <span class="p">[</span><span class="n">px</span><span class="p">,</span> <span class="n">pQ</span><span class="p">],</span> <span class="n">L</span><span class="p">,</span> <span class="s1">&#39;Railgun&#39;</span><span class="p">]</span> <span class="c1"># Zobecníme výstup</span>
<span class="k">def</span> <span class="nf">entry2</span> <span class="p">():</span> <span class="c1"># Z učebnice - pohyb planety kolem Slunce, vychází</span>
<span class="n">G</span><span class="p">,</span><span class="n">m</span><span class="p">,</span><span class="n">M</span> <span class="o">=</span> <span class="n">symbols</span> <span class="p">(</span><span class="s1">&#39;G m M&#39;</span><span class="p">)</span> <span class="c1"># konstanty</span>
<span class="c1">##### Zadání #####</span>
<span class="n">r</span><span class="p">,</span> <span class="n">phi</span> <span class="o">=</span> <span class="n">dynamicsymbols</span> <span class="p">(</span><span class="s1">&#39;r phi&#39;</span><span class="p">)</span> <span class="c1"># proměnné (zobecněné souřadnice)</span>
<span class="n">pr</span><span class="p">,</span> <span class="n">pphi</span> <span class="o">=</span> <span class="n">dynamicsymbols</span> <span class="p">(</span><span class="s1">&#39;p_r p_phi&#39;</span><span class="p">)</span> <span class="c1"># symboly pro příslušné zobecněné hybnosti</span>
<span class="c1"># Lagranžián</span>
<span class="n">L</span> <span class="o">=</span> <span class="p">(</span><span class="n">m</span><span class="o">/</span><span class="mi">2</span> <span class="o">*</span> <span class="p">((</span><span class="n">r</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">))</span><span class="o">**</span><span class="mi">2</span> <span class="o">+</span> <span class="p">(</span><span class="n">r</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">*</span><span class="p">((</span><span class="n">phi</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">))</span><span class="o">**</span><span class="mi">2</span><span class="p">)))</span> <span class="o">+</span> <span class="p">((</span><span class="n">G</span> <span class="o">*</span> <span class="n">m</span> <span class="o">*</span> <span class="n">M</span><span class="p">)</span> <span class="o">/</span> <span class="n">r</span><span class="p">)</span>
<span class="c1">#############################################################################</span>
<span class="k">return</span> <span class="p">[[</span><span class="n">r</span><span class="p">,</span> <span class="n">phi</span><span class="p">],</span> <span class="p">[</span><span class="n">pr</span><span class="p">,</span> <span class="n">pphi</span><span class="p">],</span> <span class="n">L</span><span class="p">,</span> <span class="s1">&#39;Pohyb planety&#39;</span><span class="p">]</span> <span class="c1"># Zobecníme výstup</span>
<span class="k">def</span> <span class="nf">entry3</span> <span class="p">():</span> <span class="c1"># Z učebnice - harmonický oscilátor, vychází</span>
<span class="c1">##### Zadání #####</span>
<span class="n">m</span><span class="p">,</span><span class="n">omega</span> <span class="o">=</span> <span class="n">symbols</span> <span class="p">(</span><span class="s1">&#39;m omega&#39;</span><span class="p">)</span> <span class="c1"># konstanty</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">dynamicsymbols</span> <span class="p">(</span><span class="s1">&#39;x&#39;</span><span class="p">)</span> <span class="c1"># proměnné (zobecněné souřadnice)</span>
<span class="n">px</span> <span class="o">=</span> <span class="n">dynamicsymbols</span> <span class="p">(</span><span class="s1">&#39;p_x&#39;</span><span class="p">)</span> <span class="c1"># symboly pro příslušné zobecněné hybnosti</span>
<span class="c1"># Lagranžián</span>
<span class="n">L</span> <span class="o">=</span> <span class="p">(</span><span class="n">m</span> <span class="o">*</span> <span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">))</span><span class="o">**</span><span class="mi">2</span> <span class="o">-</span> <span class="n">m</span> <span class="o">*</span> <span class="n">omega</span><span class="o">**</span><span class="mi">2</span> <span class="o">*</span> <span class="n">x</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span>
<span class="c1">#############################################################################</span>
<span class="k">return</span> <span class="p">[[</span><span class="n">x</span><span class="p">],</span> <span class="p">[</span><span class="n">px</span><span class="p">],</span> <span class="n">L</span><span class="p">,</span> <span class="s1">&#39;Harmonický oscilátor&#39;</span><span class="p">]</span> <span class="c1"># Zobecníme výstup</span>
<span class="c1">###############################################################################</span>
<span class="k">if</span> <span class="n">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="n">computed</span> <span class="o">=</span> <span class="p">[</span><span class="n">entry1</span><span class="p">,</span> <span class="n">entry2</span><span class="p">,</span> <span class="n">entry3</span><span class="p">]</span> <span class="c1"># Co vše se bude počítat</span>
<span class="n">html</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;div&#39;</span><span class="p">)</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">Element</span><span class="p">(</span><span class="s1">&#39;h1&#39;</span><span class="p">,</span><span class="s1">&#39;Automatický výpočet Hamiltonových rovnic z lagranžiánu v pythonu pomocí sympy - vyzkoušené příklady.&#39;</span><span class="p">))</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">Element</span><span class="p">(</span><span class="s1">&#39;p&#39;</span><span class="p">,</span> <span class="n">description</span><span class="p">))</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">p</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">computed</span><span class="p">,</span> <span class="n">start</span> <span class="o">=</span> <span class="mi">1</span><span class="p">):</span> <span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">compute</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">i</span><span class="p">))</span>
<span class="n">CreateHTML</span><span class="p">(</span><span class="s1">&#39;equations.html&#39;</span><span class="p">,</span> <span class="n">html</span><span class="p">)</span> <span class="c1"># převod do lidsky čitelné formy (mathjax latex v html)</span>
</pre></div>
</td></tr></table></body>
</html>

29
Hamilton/lorenz.txt Normal file
View file

@ -0,0 +1,29 @@
let bc = {t:0.0, w:[0.0, 1.0, 10.0]}
const omega = 27.0;
const sigma = 10.0;
const beta = 8.0 / 3.0;
let pf = [
(q) => {
const x = q.w[0];
const y = q.w[1];
return sigma * (y - x);
},
(q) => {
const x = q.w[0];
const y = q.w[1];
const z = q.w[2];
return x * (omega - z) - y;
},
(q) => {
const x = q.w[0];
const y = q.w[1];
const z = q.w[2];
return x * y - beta * z;
},
];
let r = solve (0.01, 2000, bc, pf);
plot (r, {x:['t'], y:['w', 0]}, '#00ff00');
plot (r, {x:['t'], y:['w', 1]}, '#ff0000');
plot (r, {x:['t'], y:['w', 2]}, '#0000ff');
plot (r, {x:['w', 0], y:['w', 2]}, '#00ffff');

21
Hamilton/nvcr.txt Normal file
View file

@ -0,0 +1,21 @@
let bc = {t:0.0, w:[0.1, 0.0]}
const C = 1.0;
const L = 1.0;
const G = 0.2;
const U0= 1.0;
let pf = [
(o) => {
const u = o.w[0];
const v = o.w[1];
return -(v + G*u*(u*u - U0*U0)) / C;
},
(o) => {
const u = o.w[0];
return u / L;
},
];
let r = solve (0.02, 4000, bc, pf);
plot (r, {x:['t'], y:['w', 0]}, '#00ff00');
plot (r, {x:['t'], y:['w', 1]}, '#ff0000');
plot (r, {x:['w', 0], y:['w', 1]}, '#00ffff');

19
Hamilton/osc.txt Normal file
View file

@ -0,0 +1,19 @@
/* Počáteční podmínky */
let bc = {t:0.0, w:[1.0, 0.0]}
/* Konstanty */
const f = 6.2831853
const fq = f * f;
/* Hamiltonovy rovnice */
let pf = [
(o) => {
return o.w[1];
},
(o) => {
return - fq * o.w[0];
},
];
let r = solve (0.01, 100, bc, pf); /* řešení */
/* Grafy */
plot (r, {x:['t'], y:['w', 0]}, '#00ff00');
plot (r, {x:['t'], y:['w', 1]}, '#ff0000');
plot (r, {x:['w', 0], y:['w', 1]}, '#00ffff');

32
Hamilton/railgun.txt Normal file
View file

@ -0,0 +1,32 @@
const m = 0.0007, mu = 1.2e-6, C = 0.020, U0 = 250.0, R = 0.01;
/* {t:t , w:[ x, p_x, Q , p_Q]}*/
let bc = {t:0.0, w:[0.2, 0.0, C * U0, 0.0]}
let ls = [
(z) => {
const p_x = z.w[1];
return p_x / m;
},
(z) => {
const x = z.w[0];
const p_Q = z.w[3];
const d = p_Q / x;
return 0.5 * d * d / mu;
},
(z) => {
const x = z.w[0];
const p_Q = z.w[3];
return p_Q / (mu * x);
},
(z) => {
const x = z.w[0];
const Q = z.w[2];
const p_Q = z.w[3];
const Rp = - (R * p_Q) / (mu * x);
return Rp - Q/C;
},
];
let r = solve (5.0e-7, 2000, bc, ls); /* řešení */
plot (r, {x:['t'], y:['w', 1]}, '#00ff00');
plot (r, {x:['t'], y:['w', 3]}, '#ff0000');

View file

@ -45,6 +45,10 @@
MIT <a href="https://code.nolog.cz/Kizarm/Calculator" target="_blank">přikládám</a>. Pro kompilaci je použit jen MIT <a href="https://code.nolog.cz/Kizarm/Calculator" target="_blank">přikládám</a>. Pro kompilaci je použit jen
clang a jím kompilovaná C-čková knihovna <a href="https://sourceware.org/newlib/" target="_blank">newlib</a>. clang a jím kompilovaná C-čková knihovna <a href="https://sourceware.org/newlib/" target="_blank">newlib</a>.
</p> </p>
<p>Že jde něco takového napsat v čistém javascriptu, viz <a href="./Hamilton/index.html">zde</a>.
Není to dokonalé, ale funguje to. Python by na to byl asi lepší, ale tady není potřeba nic jiného
než prohlížeč.
</p>
</div> </div>
</body> </body>
</html> </html>