Calculator/Hamilton/lagrange.html

539 lines
54 KiB
HTML
Raw Normal View History

2023-12-02 14:12:25 +01:00
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title></title>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<style type="text/css">
td.linenos { background-color: #f0f0f0; padding-right: 10px; }
span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }
pre { line-height: 125%; }
body .hll { background-color: #ffffcc }
body { background: #f8f8f8; }
body .c { color: #408080; font-style: italic } /* Comment */
body .err { border: 1px solid #FF0000 } /* Error */
body .k { color: #008000; font-weight: bold } /* Keyword */
body .o { color: #666666 } /* Operator */
body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */
body .cm { color: #408080; font-style: italic } /* Comment.Multiline */
body .cp { color: #BC7A00 } /* Comment.Preproc */
body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */
body .c1 { color: #408080; font-style: italic } /* Comment.Single */
body .cs { color: #408080; font-style: italic } /* Comment.Special */
body .gd { color: #A00000 } /* Generic.Deleted */
body .ge { font-style: italic } /* Generic.Emph */
body .gr { color: #FF0000 } /* Generic.Error */
body .gh { color: #000080; font-weight: bold } /* Generic.Heading */
body .gi { color: #00A000 } /* Generic.Inserted */
body .go { color: #888888 } /* Generic.Output */
body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
body .gs { font-weight: bold } /* Generic.Strong */
body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
body .gt { color: #0044DD } /* Generic.Traceback */
body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
body .kp { color: #008000 } /* Keyword.Pseudo */
body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
body .kt { color: #B00040 } /* Keyword.Type */
body .m { color: #666666 } /* Literal.Number */
body .s { color: #BA2121 } /* Literal.String */
body .na { color: #7D9029 } /* Name.Attribute */
body .nb { color: #008000 } /* Name.Builtin */
body .nc { color: #0000FF; font-weight: bold } /* Name.Class */
body .no { color: #880000 } /* Name.Constant */
body .nd { color: #AA22FF } /* Name.Decorator */
body .ni { color: #999999; font-weight: bold } /* Name.Entity */
body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
body .nf { color: #0000FF } /* Name.Function */
body .nl { color: #A0A000 } /* Name.Label */
body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
body .nt { color: #008000; font-weight: bold } /* Name.Tag */
body .nv { color: #19177C } /* Name.Variable */
body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
body .w { color: #bbbbbb } /* Text.Whitespace */
body .mb { color: #666666 } /* Literal.Number.Bin */
body .mf { color: #666666 } /* Literal.Number.Float */
body .mh { color: #666666 } /* Literal.Number.Hex */
body .mi { color: #666666 } /* Literal.Number.Integer */
body .mo { color: #666666 } /* Literal.Number.Oct */
body .sb { color: #BA2121 } /* Literal.String.Backtick */
body .sc { color: #BA2121 } /* Literal.String.Char */
body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
body .s2 { color: #BA2121 } /* Literal.String.Double */
body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
body .sh { color: #BA2121 } /* Literal.String.Heredoc */
body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
body .sx { color: #008000 } /* Literal.String.Other */
body .sr { color: #BB6688 } /* Literal.String.Regex */
body .s1 { color: #BA2121 } /* Literal.String.Single */
body .ss { color: #19177C } /* Literal.String.Symbol */
body .bp { color: #008000 } /* Name.Builtin.Pseudo */
body .vc { color: #19177C } /* Name.Variable.Class */
body .vg { color: #19177C } /* Name.Variable.Global */
body .vi { color: #19177C } /* Name.Variable.Instance */
body .il { color: #666666 } /* Literal.Number.Integer.Long */
</style>
</head>
<body>
<h2></h2>
<table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227</pre></div></td><td class="code"><div class="highlight"><pre><span class="ch">#!/usr/bin/env python</span>
<span class="c1"># -*- coding: utf-8 -*-</span>
<span class="n">description</span> <span class="o">=</span> <span class="s2">&quot;&quot;&quot;</span>
<span class="s2">Tento jednoduchý skript řeší poměrně otravný problém, který</span>
<span class="s2">je však snadno algoritmizovatelný. Jsou to jen opakované parciální derivace,</span>
<span class="s2">jejichž výsledky jsou dosazovány do daných výrazů. Protože se přitom člověk</span>
<span class="s2">snadno splete (hlavně ve znaménku), je lepší to nechat na programu.</span>
<span class="s2">Stačí nadefinovat potřebné symboly pro konstanty a časově závislé proměnné</span>
<span class="s2">(zobecněné souřadnice), pomocí nich pak vyjádřit lagranžián a o zbytek se postará python.</span>
<span class="s2">&quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">sympy.core</span> <span class="kn">import</span> <span class="n">mul</span><span class="p">,</span> <span class="n">add</span>
<span class="kn">from</span> <span class="nn">sympy.physics.vector.printing</span> <span class="kn">import</span> <span class="n">vlatex</span>
<span class="kn">from</span> <span class="nn">sympy.physics.mechanics</span> <span class="kn">import</span> <span class="n">dynamicsymbols</span>
<span class="kn">from</span> <span class="nn">sympy</span> <span class="kn">import</span> <span class="p">(</span><span class="n">Symbol</span><span class="p">,</span> <span class="n">symbols</span><span class="p">,</span> <span class="n">Derivative</span><span class="p">,</span>
<span class="n">Eq</span><span class="p">,</span> <span class="n">pprint</span><span class="p">,</span> <span class="n">solve</span><span class="p">,</span> <span class="n">latex</span><span class="p">,</span> <span class="n">simplify</span><span class="p">,</span> <span class="n">expand</span><span class="p">)</span>
<span class="c1">################# HTML dekorace ###############################################</span>
<span class="k">class</span> <span class="nc">Tag</span><span class="p">:</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">v</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="n">n</span>
<span class="bp">self</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">v</span>
<span class="k">def</span> <span class="nf">to_str</span> <span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="s1">&#39; &#39;</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">+</span> <span class="s1">&#39;=</span><span class="se">\&quot;</span><span class="s1">&#39;</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">value</span> <span class="o">+</span> <span class="s1">&#39;</span><span class="se">\&quot;</span><span class="s1">&#39;</span>
<span class="k">class</span> <span class="nc">Element</span><span class="p">:</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">v</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="n">n</span>
<span class="bp">self</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">v</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tags</span> <span class="o">=</span> <span class="p">[]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">childs</span> <span class="o">=</span> <span class="p">[]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">id</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">def</span> <span class="nf">addE</span> <span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">e</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">childs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">e</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">addT</span> <span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">t</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tags</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">t</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">addF</span> <span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">f</span><span class="p">):</span>
<span class="n">t</span> <span class="o">=</span> <span class="n">Tag</span> <span class="p">(</span><span class="s1">&#39;class&#39;</span><span class="p">,</span><span class="s1">&#39;formulaDsp&#39;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">f</span><span class="p">:</span>
<span class="n">n</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;p&#39;</span><span class="p">,</span> <span class="s1">&#39;</span><span class="se">\\</span><span class="s1">[&#39;</span> <span class="o">+</span> <span class="n">p</span> <span class="o">+</span> <span class="s1">&#39;</span><span class="se">\\</span><span class="s1">]&#39;</span><span class="p">)</span>
<span class="n">n</span><span class="o">.</span><span class="n">addT</span><span class="p">(</span><span class="n">t</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">n</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">to_str</span> <span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">indent</span><span class="p">()</span>
<span class="n">s</span><span class="o">+=</span> <span class="s1">&#39;&lt;&#39;</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span>
<span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">tags</span><span class="p">:</span> <span class="n">s</span> <span class="o">+=</span> <span class="n">n</span><span class="o">.</span><span class="n">to_str</span><span class="p">()</span>
<span class="n">s</span><span class="o">+=</span> <span class="s1">&#39;&gt;&#39;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">value</span> <span class="o">!=</span> <span class="bp">None</span><span class="p">:</span> <span class="n">s</span> <span class="o">+=</span> <span class="bp">self</span><span class="o">.</span><span class="n">value</span>
<span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">childs</span><span class="p">:</span> <span class="n">s</span> <span class="o">+=</span> <span class="n">n</span><span class="o">.</span><span class="n">to_str</span><span class="p">()</span>
<span class="n">s</span><span class="o">+=</span> <span class="bp">self</span><span class="o">.</span><span class="n">indent</span><span class="p">()</span>
<span class="n">s</span><span class="o">+=</span> <span class="s1">&#39;&lt;/&#39;</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">+</span> <span class="s1">&#39;&gt;&#39;</span>
<span class="k">return</span> <span class="n">s</span>
<span class="k">def</span> <span class="nf">cal</span> <span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">id</span> <span class="o">=</span> <span class="n">k</span>
<span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">childs</span><span class="p">:</span> <span class="n">n</span><span class="o">.</span><span class="n">cal</span> <span class="p">(</span><span class="n">k</span><span class="o">+</span><span class="mi">2</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">indent</span> <span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">id</span> <span class="o">*</span> <span class="s1">&#39; &#39;</span>
<span class="k">return</span> <span class="n">s</span>
<span class="k">def</span> <span class="nf">set_root</span> <span class="p">(</span><span class="n">e</span><span class="p">,</span> <span class="n">root</span><span class="p">):</span>
<span class="n">styl</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;style&#39;</span><span class="p">,</span> <span class="s1">&#39;body {background-color: rgb(192,255,255);} h2 {color: rgb(64,0,192);} h3 {color: rgb(192,0,0);} table {color: rgb(128,0,128);}&#39;</span><span class="p">)</span>
<span class="n">scfg</span> <span class="o">=</span> <span class="s1">&#39;MathJax.Hub.Config({</span><span class="se">\n</span><span class="s1"> extensions: [</span><span class="se">\&quot;</span><span class="s1">tex2jax.js</span><span class="se">\&quot;</span><span class="s1">,&quot;TeX/AMSmath.js&quot;],</span><span class="se">\n</span><span class="s1"> jax: [</span><span class="se">\&quot;</span><span class="s1">input/TeX</span><span class="se">\&quot;</span><span class="s1">,&#39;</span>
<span class="n">scfg</span><span class="o">+=</span> <span class="s1">&#39;</span><span class="se">\&quot;</span><span class="s1">output/HTML-CSS</span><span class="se">\&quot;</span><span class="s1">],</span><span class="se">\n</span><span class="s1"> tex2jax: {inlineMath: [[</span><span class="se">\&#39;</span><span class="s1">$</span><span class="se">\&#39;</span><span class="s1">,</span><span class="se">\&#39;</span><span class="s1">$</span><span class="se">\&#39;</span><span class="s1">]]},</span><span class="se">\n</span><span class="s1"> displayAlign: </span><span class="se">\&quot;</span><span class="s1">left</span><span class="se">\&quot;</span><span class="s1">});&#39;</span>
<span class="n">head</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;head&#39;</span><span class="p">)</span>
<span class="n">meta</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;META&#39;</span><span class="p">)</span>
<span class="n">titl</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;title&#39;</span><span class="p">,</span> <span class="s1">&#39;Lagrange&#39;</span><span class="p">)</span>
<span class="n">s1</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;script&#39;</span><span class="p">,</span> <span class="n">scfg</span><span class="p">)</span>
<span class="n">s2</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;script&#39;</span><span class="p">)</span>
<span class="n">s1</span><span class="o">.</span><span class="n">addT</span><span class="p">(</span><span class="n">Tag</span><span class="p">(</span><span class="s1">&#39;type&#39;</span><span class="p">,</span><span class="s1">&#39;text/x-mathjax-config&#39;</span><span class="p">))</span>
<span class="n">s2</span><span class="o">.</span><span class="n">addT</span><span class="p">(</span><span class="n">Tag</span><span class="p">(</span><span class="s1">&#39;type&#39;</span><span class="p">,</span><span class="s1">&#39;text/javascript&#39;</span><span class="p">))</span>
<span class="n">s2</span><span class="o">.</span><span class="n">addT</span><span class="p">(</span><span class="n">Tag</span><span class="p">(</span><span class="s1">&#39;src&#39;</span><span class="p">,</span><span class="s1">&#39;https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js&#39;</span><span class="p">))</span>
<span class="n">meta</span><span class="o">.</span><span class="n">addT</span><span class="p">(</span><span class="n">Tag</span><span class="p">(</span><span class="s1">&#39;HTTP-EQUIV&#39;</span><span class="p">,</span><span class="s1">&#39;CONTENT-TYPE&#39;</span><span class="p">))</span>
<span class="n">meta</span><span class="o">.</span><span class="n">addT</span><span class="p">(</span><span class="n">Tag</span><span class="p">(</span><span class="s1">&#39;CONTENT&#39;</span><span class="p">,</span><span class="s1">&#39;text/html; charset=utf-8&#39;</span><span class="p">))</span>
<span class="n">head</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">meta</span><span class="p">)</span>
<span class="n">head</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">titl</span><span class="p">)</span>
<span class="n">head</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">styl</span><span class="p">)</span>
<span class="n">head</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">s1</span><span class="p">)</span>
<span class="n">head</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">s2</span><span class="p">)</span>
<span class="n">e</span><span class="o">.</span><span class="n">addE</span> <span class="p">(</span><span class="n">head</span><span class="p">)</span>
<span class="n">body</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;body&#39;</span><span class="p">)</span>
<span class="n">body</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">root</span><span class="p">)</span>
<span class="n">e</span><span class="o">.</span><span class="n">addE</span> <span class="p">(</span><span class="n">body</span><span class="p">)</span>
<span class="n">e</span><span class="o">.</span><span class="n">cal</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">html_head</span> <span class="p">():</span>
<span class="n">s</span> <span class="o">=</span> <span class="s1">&#39;&lt;!DOCTYPE html PUBLIC </span><span class="se">\&quot;</span><span class="s1">-//W3C//DTD XHTML 1.0 Transitional//EN</span><span class="se">\&quot;</span><span class="s1"> </span><span class="se">\&quot;</span><span class="s1">http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd</span><span class="se">\&quot;</span><span class="s1">&gt;&#39;</span>
<span class="k">return</span> <span class="n">s</span>
<span class="k">def</span> <span class="nf">CreateHTML</span> <span class="p">(</span><span class="n">filename</span><span class="p">,</span> <span class="n">html</span><span class="p">):</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">html_head</span> <span class="p">()</span>
<span class="n">r</span> <span class="o">=</span> <span class="n">Element</span> <span class="p">(</span><span class="s1">&#39;html&#39;</span><span class="p">)</span>
<span class="n">set_root</span> <span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">html</span><span class="p">)</span>
<span class="n">s</span> <span class="o">+=</span> <span class="n">r</span><span class="o">.</span><span class="n">to_str</span><span class="p">()</span>
<span class="nb">file</span> <span class="o">=</span> <span class="nb">open</span> <span class="p">(</span><span class="n">filename</span><span class="p">,</span><span class="s1">&#39;w&#39;</span><span class="p">)</span>
<span class="nb">file</span><span class="o">.</span><span class="n">write</span><span class="p">(</span><span class="n">s</span><span class="p">)</span>
<span class="nb">file</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">output</span> <span class="p">(</span><span class="n">counter</span><span class="p">,</span> <span class="n">problem</span><span class="p">,</span> <span class="n">L</span><span class="p">,</span> <span class="n">H</span><span class="p">,</span> <span class="n">hce</span><span class="p">,</span> <span class="n">lce</span><span class="p">):</span>
<span class="n">html</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;div&#39;</span><span class="p">,</span> <span class="s1">&#39;&lt;hr&gt;&#39;</span><span class="p">)</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">Element</span><span class="p">(</span><span class="s1">&#39;h2&#39;</span><span class="p">,</span><span class="s1">&#39;Řešený problém : {0:s}&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">problem</span><span class="p">)))</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">Element</span><span class="p">(</span><span class="s1">&#39;h3&#39;</span><span class="p">,</span><span class="s1">&#39;{0:d}.1. Zadaný lagranžián :&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">counter</span><span class="p">)))</span>
<span class="n">html</span><span class="o">.</span><span class="n">addF</span> <span class="p">([</span><span class="s1">&#39;L = &#39;</span> <span class="o">+</span> <span class="n">vlatex</span><span class="p">(</span><span class="n">L</span><span class="p">)]);</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">Element</span><span class="p">(</span><span class="s1">&#39;h3&#39;</span><span class="p">,</span><span class="s1">&#39;{0:d}.2. Lagrangeovy rovnice :&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">counter</span><span class="p">)))</span>
<span class="n">html</span><span class="o">.</span><span class="n">addF</span> <span class="p">([</span><span class="n">vlatex</span><span class="p">(</span><span class="n">lce</span><span class="p">)]);</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">Element</span><span class="p">(</span><span class="s1">&#39;h3&#39;</span><span class="p">,</span><span class="s1">&#39;{0:d}.3. Hamiltonova funkce :&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">counter</span><span class="p">)))</span>
<span class="n">html</span><span class="o">.</span><span class="n">addF</span> <span class="p">([</span><span class="s1">&#39;H = &#39;</span> <span class="o">+</span> <span class="n">vlatex</span><span class="p">(</span><span class="n">H</span><span class="p">)]);</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">Element</span><span class="p">(</span><span class="s1">&#39;h3&#39;</span><span class="p">,</span><span class="s1">&#39;{0:d}.4. Hamiltonovy kanonické rovnice :&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">counter</span><span class="p">)))</span>
<span class="n">table</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;table&#39;</span><span class="p">)</span>
<span class="n">table</span><span class="o">.</span><span class="n">addT</span><span class="p">(</span><span class="n">Tag</span><span class="p">(</span><span class="s1">&#39;align&#39;</span><span class="p">,</span><span class="s1">&#39;center&#39;</span><span class="p">))</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">hce</span><span class="p">:</span>
<span class="n">td</span> <span class="o">=</span> <span class="s1">&#39;&#39;</span>
<span class="k">for</span> <span class="n">q</span> <span class="ow">in</span> <span class="n">p</span><span class="p">:</span> <span class="n">td</span> <span class="o">+=</span> <span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&lt;td class=&quot;formulaDsp&quot;&gt;</span><span class="se">\\</span><span class="s1">[{0:s}={1:s}\qquad</span><span class="se">\\</span><span class="s1">]&lt;/td&gt;&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">vlatex</span><span class="p">(</span><span class="n">q</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="n">vlatex</span><span class="p">(</span><span class="n">expand</span><span class="p">(</span><span class="n">q</span><span class="p">[</span><span class="mi">1</span><span class="p">])))</span>
<span class="n">tr</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;tr&#39;</span><span class="p">,</span> <span class="n">td</span><span class="p">)</span>
<span class="n">table</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">tr</span><span class="p">)</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">table</span><span class="p">)</span>
<span class="k">return</span> <span class="n">html</span>
<span class="c1">#################### Vlastní výpočty ##########################################</span>
<span class="n">t</span> <span class="o">=</span> <span class="n">Symbol</span><span class="p">(</span><span class="s1">&#39;t&#39;</span><span class="p">)</span> <span class="c1"># Globální symbol pro čas</span>
<span class="c1"># vykrácení konstantou uděláme ručně, ale nemusí to fungovat, v podstatě jde jen o zbytečné hmotnosti</span>
<span class="k">def</span> <span class="nf">parse</span> <span class="p">(</span><span class="n">ex</span><span class="p">):</span>
<span class="n">ex</span> <span class="o">=</span> <span class="n">expand</span> <span class="p">(</span><span class="n">ex</span><span class="p">)</span>
<span class="k">if</span> <span class="n">ex</span><span class="o">.</span><span class="n">func</span> <span class="o">!=</span> <span class="n">add</span><span class="o">.</span><span class="n">Add</span><span class="p">:</span> <span class="k">return</span> <span class="n">ex</span>
<span class="n">e1</span> <span class="o">=</span> <span class="n">ex</span><span class="o">.</span><span class="n">args</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">if</span> <span class="n">e1</span><span class="o">.</span><span class="n">func</span> <span class="o">!=</span> <span class="n">mul</span><span class="o">.</span><span class="n">Mul</span><span class="p">:</span> <span class="k">return</span> <span class="n">ex</span>
<span class="n">p</span> <span class="o">=</span> <span class="n">e1</span><span class="o">.</span><span class="n">args</span>
<span class="n">x</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">b</span> <span class="ow">in</span> <span class="n">p</span><span class="p">:</span> <span class="n">x</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">ex</span><span class="o">.</span><span class="n">args</span><span class="p">:</span>
<span class="k">if</span> <span class="n">e</span><span class="o">.</span><span class="n">func</span> <span class="o">!=</span> <span class="n">mul</span><span class="o">.</span><span class="n">Mul</span><span class="p">:</span> <span class="k">break</span>
<span class="k">for</span> <span class="n">a</span> <span class="ow">in</span> <span class="n">e</span><span class="o">.</span><span class="n">args</span><span class="p">:</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">b</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">p</span><span class="p">):</span>
<span class="k">if</span> <span class="n">a</span> <span class="o">==</span> <span class="n">b</span><span class="p">:</span> <span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">+=</span> <span class="mi">1</span> <span class="c1"># TODO: or plus power of expression</span>
<span class="n">l</span> <span class="o">=</span> <span class="nb">len</span> <span class="p">(</span><span class="n">ex</span><span class="o">.</span><span class="n">args</span><span class="p">)</span>
<span class="n">z</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">y</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="k">if</span> <span class="n">y</span> <span class="o">==</span> <span class="n">l</span><span class="p">:</span> <span class="n">z</span><span class="o">.</span><span class="n">append</span> <span class="p">(</span><span class="n">p</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
<span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">z</span><span class="p">:</span> <span class="n">ex</span> <span class="o">=</span> <span class="n">ex</span> <span class="o">/</span> <span class="n">e</span>
<span class="n">ex</span> <span class="o">=</span> <span class="n">simplify</span> <span class="p">(</span><span class="n">ex</span><span class="p">)</span>
<span class="n">ex</span> <span class="o">=</span> <span class="n">expand</span> <span class="p">(</span><span class="n">ex</span><span class="p">)</span>
<span class="k">return</span> <span class="n">ex</span>
<span class="k">def</span> <span class="nf">lagrange</span> <span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="n">coord</span><span class="p">):</span>
<span class="n">lce</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">coord</span><span class="p">:</span>
<span class="n">ex</span> <span class="o">=</span> <span class="n">L</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">c</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">)</span> <span class="o">-</span> <span class="n">L</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">c</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="c1"># výraz pro Lagrangeovu rovnici</span>
<span class="n">ex</span> <span class="o">=</span> <span class="n">parse</span> <span class="p">(</span><span class="n">ex</span><span class="p">)</span> <span class="c1"># vykrátit případné konstanty (lze i ručně)</span>
<span class="n">le</span> <span class="o">=</span> <span class="n">Eq</span> <span class="p">(</span><span class="n">ex</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> <span class="c1"># a udělat z toho rovnici</span>
<span class="n">lce</span><span class="o">.</span><span class="n">append</span> <span class="p">(</span><span class="n">le</span><span class="p">)</span>
<span class="n">pprint</span><span class="p">(</span><span class="n">lce</span><span class="p">)</span>
<span class="k">return</span> <span class="n">lce</span>
<span class="k">def</span> <span class="nf">compute</span> <span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">Counter</span><span class="p">):</span>
<span class="n">res</span> <span class="o">=</span> <span class="nb">input</span><span class="p">()</span>
<span class="n">coord__x</span> <span class="o">=</span> <span class="n">res</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">coord__p</span> <span class="o">=</span> <span class="n">res</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="n">L</span> <span class="o">=</span> <span class="n">res</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
<span class="n">pprint</span> <span class="p">(</span><span class="n">L</span><span class="p">)</span> <span class="c1"># Pro kontrolu</span>
<span class="n">coord_dp</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">coord__p</span><span class="p">:</span> <span class="n">coord_dp</span><span class="o">.</span><span class="n">append</span> <span class="p">(</span><span class="n">p</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">))</span>
<span class="n">coord_dx</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">coord__x</span><span class="p">:</span> <span class="n">coord_dx</span><span class="o">.</span><span class="n">append</span> <span class="p">(</span><span class="n">p</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">))</span>
<span class="n">lce</span> <span class="o">=</span> <span class="n">lagrange</span> <span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="nb">zip</span><span class="p">(</span><span class="n">coord__x</span><span class="p">,</span> <span class="n">coord_dx</span><span class="p">))</span>
<span class="n">E</span> <span class="o">=</span> <span class="o">-</span><span class="n">L</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">coord_dx</span><span class="p">:</span> <span class="n">E</span> <span class="o">+=</span> <span class="n">L</span><span class="o">.</span><span class="n">diff</span> <span class="p">(</span><span class="n">p</span><span class="p">)</span> <span class="o">*</span> <span class="n">p</span>
<span class="n">E</span> <span class="o">=</span> <span class="n">simplify</span> <span class="p">(</span><span class="n">E</span><span class="p">)</span>
<span class="c1">#pprint (E) # Energie</span>
<span class="n">coord_ps</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">coord_dx</span><span class="p">:</span> <span class="n">coord_ps</span><span class="o">.</span><span class="n">append</span> <span class="p">(</span><span class="n">L</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">p</span><span class="p">))</span>
<span class="n">coord__h</span> <span class="o">=</span> <span class="nb">zip</span> <span class="p">(</span><span class="n">coord__p</span><span class="p">,</span> <span class="n">coord_ps</span><span class="p">)</span>
<span class="n">eqs</span> <span class="o">=</span> <span class="p">[]</span> <span class="c1"># Legendreova duální transformace</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">coord__h</span><span class="p">:</span> <span class="n">eqs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">Eq</span><span class="p">(</span><span class="n">p</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">p</span><span class="p">[</span><span class="mi">1</span><span class="p">]))</span>
<span class="n">sol</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">p</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">eqs</span><span class="p">):</span> <span class="n">sol</span><span class="o">.</span><span class="n">append</span> <span class="p">(</span><span class="n">solve</span> <span class="p">([</span><span class="n">p</span><span class="p">],</span> <span class="p">[</span><span class="n">coord_dx</span><span class="p">[</span><span class="n">i</span><span class="p">]]))</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">p</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">sol</span><span class="p">):</span> <span class="n">E</span> <span class="o">=</span> <span class="n">E</span><span class="o">.</span><span class="n">subs</span> <span class="p">(</span><span class="n">coord_dx</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">p</span><span class="p">[</span><span class="n">coord_dx</span><span class="p">[</span><span class="n">i</span><span class="p">]])</span>
<span class="n">H</span> <span class="o">=</span> <span class="n">simplify</span> <span class="p">(</span><span class="n">E</span><span class="p">)</span>
<span class="n">H</span> <span class="o">=</span> <span class="n">expand</span> <span class="p">(</span><span class="n">H</span><span class="p">)</span> <span class="c1"># O něco čitelněji</span>
<span class="n">pprint</span> <span class="p">(</span><span class="n">H</span><span class="p">)</span> <span class="c1"># Hamiltonova funkce</span>
<span class="n">hce</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">p</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">coord__x</span><span class="p">):</span>
<span class="n">eqx</span> <span class="o">=</span> <span class="n">Eq</span> <span class="p">(</span><span class="o">+</span><span class="n">H</span><span class="o">.</span><span class="n">diff</span> <span class="p">(</span><span class="n">coord__p</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="o">-</span> <span class="n">coord_dx</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">eqx</span> <span class="o">=</span> <span class="n">solve</span> <span class="p">([</span><span class="n">eqx</span><span class="p">],[</span><span class="n">coord_dx</span><span class="p">[</span><span class="n">i</span><span class="p">]])</span>
<span class="n">eqx</span> <span class="o">=</span> <span class="p">[</span><span class="n">coord_dx</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">eqx</span><span class="p">[</span><span class="n">coord_dx</span><span class="p">[</span><span class="n">i</span><span class="p">]]]</span>
<span class="n">eqp</span> <span class="o">=</span> <span class="n">Eq</span> <span class="p">(</span><span class="o">-</span><span class="n">H</span><span class="o">.</span><span class="n">diff</span> <span class="p">(</span><span class="n">coord__x</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="o">-</span> <span class="n">coord_dp</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">eqp</span> <span class="o">=</span> <span class="n">solve</span> <span class="p">([</span><span class="n">eqp</span><span class="p">],[</span><span class="n">coord_dp</span><span class="p">[</span><span class="n">i</span><span class="p">]])</span>
<span class="n">eqp</span> <span class="o">=</span> <span class="p">[</span><span class="n">coord_dp</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">eqp</span><span class="p">[</span><span class="n">coord_dp</span><span class="p">[</span><span class="n">i</span><span class="p">]]]</span>
<span class="n">hce</span><span class="o">.</span><span class="n">append</span><span class="p">([</span><span class="n">eqx</span><span class="p">,</span> <span class="n">eqp</span><span class="p">])</span>
<span class="n">pprint</span> <span class="p">(</span><span class="n">hce</span><span class="p">)</span> <span class="c1"># Hamiltonovy kanonické rovnice</span>
<span class="k">return</span> <span class="n">output</span> <span class="p">(</span><span class="n">Counter</span><span class="p">,</span> <span class="n">res</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">L</span><span class="p">,</span> <span class="n">H</span><span class="p">,</span> <span class="n">hce</span><span class="p">,</span> <span class="n">lce</span><span class="p">)</span>
<span class="c1">######################## Uživatelská část #####################################</span>
<span class="k">def</span> <span class="nf">entry1</span> <span class="p">():</span>
<span class="c1">##### Zadání #####</span>
<span class="n">m</span><span class="p">,</span><span class="n">mu</span><span class="p">,</span><span class="n">C</span> <span class="o">=</span> <span class="n">symbols</span> <span class="p">(</span><span class="s1">&#39;m mu C&#39;</span><span class="p">)</span> <span class="c1"># konstanty</span>
<span class="n">x</span><span class="p">,</span> <span class="n">Q</span> <span class="o">=</span> <span class="n">dynamicsymbols</span> <span class="p">(</span><span class="s1">&#39;x Q&#39;</span><span class="p">)</span> <span class="c1"># proměnné (zobecněné souřadnice)</span>
<span class="n">px</span><span class="p">,</span><span class="n">pQ</span> <span class="o">=</span> <span class="n">dynamicsymbols</span> <span class="p">(</span><span class="s1">&#39;p_x p_Q&#39;</span><span class="p">)</span> <span class="c1"># symboly pro příslušné zobecněné hybnosti</span>
<span class="c1"># Lagranžián</span>
<span class="n">L</span> <span class="o">=</span> <span class="p">(</span><span class="n">m</span> <span class="o">*</span> <span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">))</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="p">(</span><span class="n">mu</span> <span class="o">*</span> <span class="n">x</span> <span class="o">*</span> <span class="p">(</span><span class="n">Q</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">))</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span> <span class="o">-</span> <span class="p">(</span><span class="n">Q</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">C</span><span class="p">)</span>
<span class="c1">#############################################################################</span>
<span class="k">return</span> <span class="p">[[</span><span class="n">x</span><span class="p">,</span> <span class="n">Q</span><span class="p">],</span> <span class="p">[</span><span class="n">px</span><span class="p">,</span> <span class="n">pQ</span><span class="p">],</span> <span class="n">L</span><span class="p">,</span> <span class="s1">&#39;Railgun&#39;</span><span class="p">]</span> <span class="c1"># Zobecníme výstup</span>
<span class="k">def</span> <span class="nf">entry2</span> <span class="p">():</span> <span class="c1"># Z učebnice - pohyb planety kolem Slunce, vychází</span>
<span class="n">G</span><span class="p">,</span><span class="n">m</span><span class="p">,</span><span class="n">M</span> <span class="o">=</span> <span class="n">symbols</span> <span class="p">(</span><span class="s1">&#39;G m M&#39;</span><span class="p">)</span> <span class="c1"># konstanty</span>
<span class="c1">##### Zadání #####</span>
<span class="n">r</span><span class="p">,</span> <span class="n">phi</span> <span class="o">=</span> <span class="n">dynamicsymbols</span> <span class="p">(</span><span class="s1">&#39;r phi&#39;</span><span class="p">)</span> <span class="c1"># proměnné (zobecněné souřadnice)</span>
<span class="n">pr</span><span class="p">,</span> <span class="n">pphi</span> <span class="o">=</span> <span class="n">dynamicsymbols</span> <span class="p">(</span><span class="s1">&#39;p_r p_phi&#39;</span><span class="p">)</span> <span class="c1"># symboly pro příslušné zobecněné hybnosti</span>
<span class="c1"># Lagranžián</span>
<span class="n">L</span> <span class="o">=</span> <span class="p">(</span><span class="n">m</span><span class="o">/</span><span class="mi">2</span> <span class="o">*</span> <span class="p">((</span><span class="n">r</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">))</span><span class="o">**</span><span class="mi">2</span> <span class="o">+</span> <span class="p">(</span><span class="n">r</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">*</span><span class="p">((</span><span class="n">phi</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">))</span><span class="o">**</span><span class="mi">2</span><span class="p">)))</span> <span class="o">+</span> <span class="p">((</span><span class="n">G</span> <span class="o">*</span> <span class="n">m</span> <span class="o">*</span> <span class="n">M</span><span class="p">)</span> <span class="o">/</span> <span class="n">r</span><span class="p">)</span>
<span class="c1">#############################################################################</span>
<span class="k">return</span> <span class="p">[[</span><span class="n">r</span><span class="p">,</span> <span class="n">phi</span><span class="p">],</span> <span class="p">[</span><span class="n">pr</span><span class="p">,</span> <span class="n">pphi</span><span class="p">],</span> <span class="n">L</span><span class="p">,</span> <span class="s1">&#39;Pohyb planety&#39;</span><span class="p">]</span> <span class="c1"># Zobecníme výstup</span>
<span class="k">def</span> <span class="nf">entry3</span> <span class="p">():</span> <span class="c1"># Z učebnice - harmonický oscilátor, vychází</span>
<span class="c1">##### Zadání #####</span>
<span class="n">m</span><span class="p">,</span><span class="n">omega</span> <span class="o">=</span> <span class="n">symbols</span> <span class="p">(</span><span class="s1">&#39;m omega&#39;</span><span class="p">)</span> <span class="c1"># konstanty</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">dynamicsymbols</span> <span class="p">(</span><span class="s1">&#39;x&#39;</span><span class="p">)</span> <span class="c1"># proměnné (zobecněné souřadnice)</span>
<span class="n">px</span> <span class="o">=</span> <span class="n">dynamicsymbols</span> <span class="p">(</span><span class="s1">&#39;p_x&#39;</span><span class="p">)</span> <span class="c1"># symboly pro příslušné zobecněné hybnosti</span>
<span class="c1"># Lagranžián</span>
<span class="n">L</span> <span class="o">=</span> <span class="p">(</span><span class="n">m</span> <span class="o">*</span> <span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">diff</span><span class="p">(</span><span class="n">t</span><span class="p">))</span><span class="o">**</span><span class="mi">2</span> <span class="o">-</span> <span class="n">m</span> <span class="o">*</span> <span class="n">omega</span><span class="o">**</span><span class="mi">2</span> <span class="o">*</span> <span class="n">x</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span>
<span class="c1">#############################################################################</span>
<span class="k">return</span> <span class="p">[[</span><span class="n">x</span><span class="p">],</span> <span class="p">[</span><span class="n">px</span><span class="p">],</span> <span class="n">L</span><span class="p">,</span> <span class="s1">&#39;Harmonický oscilátor&#39;</span><span class="p">]</span> <span class="c1"># Zobecníme výstup</span>
<span class="c1">###############################################################################</span>
<span class="k">if</span> <span class="n">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="n">computed</span> <span class="o">=</span> <span class="p">[</span><span class="n">entry1</span><span class="p">,</span> <span class="n">entry2</span><span class="p">,</span> <span class="n">entry3</span><span class="p">]</span> <span class="c1"># Co vše se bude počítat</span>
<span class="n">html</span> <span class="o">=</span> <span class="n">Element</span><span class="p">(</span><span class="s1">&#39;div&#39;</span><span class="p">)</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">Element</span><span class="p">(</span><span class="s1">&#39;h1&#39;</span><span class="p">,</span><span class="s1">&#39;Automatický výpočet Hamiltonových rovnic z lagranžiánu v pythonu pomocí sympy - vyzkoušené příklady.&#39;</span><span class="p">))</span>
<span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">Element</span><span class="p">(</span><span class="s1">&#39;p&#39;</span><span class="p">,</span> <span class="n">description</span><span class="p">))</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">p</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">computed</span><span class="p">,</span> <span class="n">start</span> <span class="o">=</span> <span class="mi">1</span><span class="p">):</span> <span class="n">html</span><span class="o">.</span><span class="n">addE</span><span class="p">(</span><span class="n">compute</span><span class="p">(</span><span class="n">p</span><span class="p">,</span> <span class="n">i</span><span class="p">))</span>
<span class="n">CreateHTML</span><span class="p">(</span><span class="s1">&#39;equations.html&#39;</span><span class="p">,</span> <span class="n">html</span><span class="p">)</span> <span class="c1"># převod do lidsky čitelné formy (mathjax latex v html)</span>
</pre></div>
</td></tr></table></body>
</html>